Hydrogen peroxide electrogeneration in gas diffusion electrode nanostructured with Ta2O5

被引:97
作者
Carneiro, Jussara F. [1 ]
Rocha, Robson S. [1 ]
Hammer, Peter [2 ]
Bertazzoli, R. [3 ]
Lanza, M. R. V. [1 ]
机构
[1] Univ Sao Paulo, Inst Quim Sao Carlos, Ave Trabalhador Sao Carlene 400, BR-13566590 Sao Carlos, SP, Brazil
[2] Univ Estadual Paulista, Inst Quim, Rua Prof Francisco Degni 55, BR-14800060 Araraquara, SP, Brazil
[3] Univ Estadual Campinas, Fac Engn Mecan, Rua Mendeleyev 200, BR-13083860 Campinas, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Tantalum oxide; Oxygen reduction reaction; Hydrogen peroxide electrogeneration; Gas diffusion electrode; OXYGEN REDUCTION; ELECTROCATALYSTS; ELECTROREDUCTION; CATALYST;
D O I
10.1016/j.apcata.2016.03.013
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Highly efficient H2O2 electrogeneration is required in the Advanced Oxidation Process for organic wastewater treatment. However, the development of more efficient catalytic particles used in gas diffusion electrodes (GDEs) to enable the oxygen reduction reaction through two-electron transfer is still of great importance. The performance of the Ta2O5 nanoparticles on carbon black in catalyzing the ORR was evaluated using rotating ring-disk electrode. The current efficiency for H2O2 electrogeneration on Ta2O5/C catalyst is 83.2% whereas carbon black exhibits 65.3%. GDEs were constructed using carbon black either unmodified or modified with Ta2O5 nanoparticles. The modified GDE produces 27.9 mg L-1 of H2O2, while the unmodified GDE generates 19.1 mg L-1 of H2O2. Furthermore, the energy consumption for the H2O2 electrogeneration is lower in modified than in unmodified GDE (15.0 kWh vs. 18.8 kWh). The high performance of the GDE (Ta2O5/C) renders it a viable alternative cathode in the electrochemical treatment of wastewaters. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:161 / 167
页数:7
相关论文
共 26 条
[1]   Synthesis and characterization of nanostructured electrocatalysts based on nickel and tin for hydrogen peroxide electrogeneration [J].
Antonin, V. S. ;
Assumpcao, M. H. M. T. ;
Silva, J. C. M. ;
Parreira, L. S. ;
Lanza, M. R. V. ;
Santos, M. C. .
ELECTROCHIMICA ACTA, 2013, 109 :245-251
[2]  
Appleby A.J., 1983, Comprehensive Treatise of Electrochemistry
[3]   A comparative study of the electrogeneration of hydrogen peroxide using Vulcan and Printex carbon supports [J].
Assumpcao, M. H. M. T. ;
De Souza, R. F. B. ;
Rascio, D. C. ;
Silva, J. C. M. ;
Calegaro, M. L. ;
Gaubeur, I. ;
Paixao, T. R. L. C. ;
Hammer, P. ;
Lanza, M. R. V. ;
Santos, M. C. .
CARBON, 2011, 49 (08) :2842-2851
[4]   Electro-Fenton degradation of the food dye amaranth using a gas diffusion electrode modified with cobalt (II) phthalocyanine [J].
Barros, Willyam R. P. ;
Franco, Poliana C. ;
Steter, Juliana R. ;
Rocha, Robson S. ;
Lanza, Marcos R. V. .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2014, 722 :46-53
[5]   Electrogeneration of hydrogen peroxide in acidic medium using gas diffusion electrodes modified with cobalt (II) phthalocyanine [J].
Barros, Willyam R. P. ;
Reis, Rafael M. ;
Rocha, Robson S. ;
Lanza, Marcos R. V. .
ELECTROCHIMICA ACTA, 2013, 104 :12-18
[6]   Iron(II) catalysis of the mineralization of aniline using a carbon-PTFE O-2-fed cathode [J].
Brillas, E ;
Mur, E ;
Casado, J .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1996, 143 (03) :L49-L53
[7]   CRITICAL-REVIEW OF RATE CONSTANTS FOR REACTIONS OF HYDRATED ELECTRONS, HYDROGEN-ATOMS AND HYDROXYL RADICALS (.OH/.O-) IN AQUEOUS-SOLUTION [J].
BUXTON, GV ;
GREENSTOCK, CL ;
HELMAN, WP ;
ROSS, AB .
JOURNAL OF PHYSICAL AND CHEMICAL REFERENCE DATA, 1988, 17 (02) :513-886
[8]   Nb2O5 nanoparticles supported on reduced graphene oxide sheets as electrocatalyst for the H2O2 electrogeneration [J].
Carneiro, Jussara F. ;
Paulo, Maria J. ;
Siaj, Mohamed ;
Tavares, Ana C. ;
Lanza, Marcos R. V. .
JOURNAL OF CATALYSIS, 2015, 332 :51-61
[9]   Electrochemical synthesis of hydrogen peroxide on oxygen-fed graphite/PTFE electrodes modified by 2-ethylanthraquinone [J].
Forti, J. C. ;
Rocha, R. S. ;
Lanza, M. R. V. ;
Bertazzoli, R. .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2007, 601 (1-2) :63-67