Wave kinetics of random fibre lasers

被引:131
作者
Churkin, D. V. [1 ,2 ,3 ]
Kolokolov, I. V. [4 ,5 ]
Podivilov, E. V. [2 ,3 ]
Vatnik, I. D. [2 ,3 ]
Nikulin, M. A. [2 ]
Vergeles, S. S. [4 ,5 ]
Terekhov, I. S. [3 ,6 ]
Lebedev, V. V. [4 ,5 ]
Falkovich, G. [7 ,8 ]
Babin, S. A. [2 ,3 ]
Turitsyn, S. K. [1 ,3 ]
机构
[1] Aston Univ, Aston Inst Photon Technol, Birmingham B4 7ET, W Midlands, England
[2] Russian Acad Sci, Inst Automat & Electrometry, Siberian Branch, Novosibirsk 630090, Russia
[3] Novosibirsk State Univ, Novosibirsk 630090, Russia
[4] Russian Acad Sci, LD Landau Theoret Phys Inst, Chernogolovka 142432, Russia
[5] Moscow Inst Phys & Technol, Dolgoprudnyi 141700, Russia
[6] Budker Inst Nucl Phys, Novosibirsk 630090, Russia
[7] Weizmann Inst Sci, IL-76100 Rehovot, Israel
[8] Inst Informat Transmiss Problems, Moscow 127994, Russia
基金
俄罗斯科学基金会;
关键词
D O I
10.1038/ncomms7214
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Traditional wave kinetics describes the slow evolution of systems with many degrees of freedom to equilibrium via numerous weak non-linear interactions and fails for very important class of dissipative (active) optical systems with cyclic gain and losses, such as lasers with non-linear intracavity dynamics. Here we introduce a conceptually new class of cyclic wave systems, characterized by non-uniform double-scale dynamics with strong periodic changes of the energy spectrum and slow evolution from cycle to cycle to a statistically steady state. Taking a practically important example-random fibre laser-we show that a model describing such a system is close to integrable non-linear Schrodinger equation and needs a new formalism of wave kinetics, developed here. We derive a non-linear kinetic theory of the laser spectrum, generalizing the seminal linear model of Schawlow and Townes. Experimental results agree with our theory. The work has implications for describing kinetics of cyclical systems beyond photonics.
引用
收藏
页数:6
相关论文
共 32 条
[1]  
Agrawal G., 1999, FIBRE OPTIC COMMUNIC
[2]  
Arnold V. I., 1978, Mathematical methods of classical mechanics
[3]   Condensation and thermalization of classsical optical waves in a waveguide [J].
Aschieri, P. ;
Garnier, J. ;
Michel, C. ;
Doya, V. ;
Picozzi, A. .
PHYSICAL REVIEW A, 2011, 83 (03)
[4]   Turbulent broadening of optical spectra in ultralong Raman fiber lasers [J].
Babin, S. A. ;
Karalekas, V. ;
Podivilov, E. V. ;
Mezentsev, V. K. ;
Harper, P. ;
Ania-Castanon, J. D. ;
Turitsyn, S. K. .
PHYSICAL REVIEW A, 2008, 77 (03)
[5]   Four-wave-mixing-induced turbulent spectral broadening in a long Raman fiber laser [J].
Babin, Sergey A. ;
Churkin, Dmitriy V. ;
Ismagulov, Arsen E. ;
Kablukov, Sergey I. ;
Podivilov, Evgeny V. .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2007, 24 (08) :1729-1738
[6]  
Boltzmann L., 1872, SITZUNGSBERICHTE KAI, V66, P275
[7]  
Boltzmann Ludwig, 1895, Nature, V51, P413, DOI DOI 10.1038/051413B0
[8]   Random laser action in semiconductor powder [J].
Cao, H ;
Zhao, YG ;
Ho, ST ;
Seelig, EW ;
Wang, QH ;
Chang, RPH .
PHYSICAL REVIEW LETTERS, 1999, 82 (11) :2278-2281
[9]  
Csele M., 2004, FUNDAMENTALS LIGHT S
[10]  
Falkovich G, 1992, Kolmogorov spectra of turbulence, DOI DOI 10.1007/978-3-642-50052-7