Universal influenza vaccines: from viruses to nanoparticles

被引:40
作者
Wang, Ye [1 ]
Deng, Lei [1 ]
Kang, Sang-Moo [1 ]
Wang, Bao-Zhong [1 ]
机构
[1] Georgia State Univ, Ctr Inflammat Immun & Infect, Inst Biomed Sci, Atlanta, GA 30303 USA
基金
美国国家卫生研究院;
关键词
HA stalk antigen; influenza virus; microneedle; nanoparticle; seasonal influenza vaccine; universal influenza vaccine; M2 EXTRACELLULAR DOMAINS; A VIRUS; HEMAGGLUTININ-STEM; PROTEIN NANOPARTICLES; PROTECTIVE IMMUNITY; MUCOSAL IMMUNITY; PARTICLES CONFER; CROSS-PROTECTION; T-CELLS; VACCINATION;
D O I
10.1080/14760584.2018.1541408
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Introduction: The current seasonal influenza vaccine confers only limited protection due to waning antibodies or the antigenic shift and drift of major influenza surface antigens. A universal influenza vaccine which induces broad cross-protection against divergent influenza viruses with a comparable or better efficacy to seasonal influenza vaccines against matched strains will negate the need for an annual update of vaccine strains and protect against possible influenza pandemics. Areas covered: In this review, we summarize the recent progress in nanoparticle-based universal influenza vaccine development. We compared the most potent nanoparticle categories, focusing on how they encapsulate conserved influenza epitopes, stimulate the innate and adaptive immune systems, exhibit antigen depot effect, extend the period for antigen-processing and presentation, and exert an intrinsic adjuvant effect on inducing robust immune responses. Expert commentary: The development of an effective universal influenza vaccine is an urgent task. Traditional influenza vaccine approaches are not sufficient for preventing recurrent epidemics or occasional pandemics. Nanoparticles are compatible with different immunogens and immune stimulators and can overcome the intrinsically low immunogenicity of conserved influenza virus antigens. We foresee that an affordable universal influenza vaccine will be available within ten years by integrating nanoparticles with other targeted delivery and controlled release technology.
引用
收藏
页码:967 / 976
页数:10
相关论文
共 100 条
[31]   M2e-tetramer-specific memory CD4 T cells are broadly protective against influenza infection [J].
Eliasson, D. G. ;
Omokanye, A. ;
Schon, K. ;
Wenzel, U. A. ;
Bernasconi, V. ;
Bemark, M. ;
Kolpe, A. ;
El Bakkouri, K. ;
Ysenbaert, T. ;
Deng, L. ;
Fiers, W. ;
Saelens, X. ;
Lycke, N. .
MUCOSAL IMMUNOLOGY, 2018, 11 (01) :273-289
[32]  
Fernandes F, 2013, EXPERT REV VACCINES, V12, P225, DOI [10.1586/erv.12.153, 10.1586/ERV.12.153]
[33]   Self-Assembling Cages from Coiled-Coil Peptide Modules [J].
Fletcher, Jordan M. ;
Harniman, Robert L. ;
Barnes, Frederick R. H. ;
Boyle, Aimee L. ;
Collins, Andrew ;
Mantell, Judith ;
Sharp, Thomas H. ;
Antognozzi, Massimo ;
Booth, Paula J. ;
Linden, Noah ;
Miles, Mervyn J. ;
Sessions, Richard B. ;
Verkade, Paul ;
Woolfson, Derek N. .
SCIENCE, 2013, 340 (6132) :595-599
[34]   Correlation of cellular immune responses with protection against culture-confirmed influenza virus in young children [J].
Forrest, Bruce D. ;
Pride, Michael W. ;
Dunning, Andrew J. ;
Capeding, Maria Rosario Z. ;
Chotpitayasunondh, Tawee ;
Tam, John S. ;
Rappaport, Ruth ;
Eldridge, John H. ;
Gruber, William C. .
CLINICAL AND VACCINE IMMUNOLOGY, 2008, 15 (07) :1042-1053
[35]   Development of a nanoparticle-based influenza vaccine using the PRINT® technology [J].
Galloway, Ashley L. ;
Murphy, Andrew ;
DeSimone, Joseph M. ;
Di, Jie ;
Herrmann, Jennifer P. ;
Hunter, Michael E. ;
Kindig, Jeffrey P. ;
Malinoski, Frank J. ;
Rumley, Megan A. ;
Stoltz, Daria M. ;
Templeman, Thomas S. ;
Hubby, Bolyn .
NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE, 2013, 9 (04) :523-531
[36]   Human Infection with a Novel Avian-Origin Influenza A (H7N9) Virus [J].
Gao, Rongbao ;
Cao, Bin ;
Hu, Yunwen ;
Feng, Zijian ;
Wang, Dayan ;
Hu, Wanfu ;
Chen, Jian ;
Jie, Zhijun ;
Qiu, Haibo ;
Xu, Ke ;
Xu, Xuewei ;
Lu, Hongzhou ;
Zhu, Wenfei ;
Gao, Zhancheng ;
Xiang, Nijuan ;
Shen, Yinzhong ;
He, Zebao ;
Gu, Yong ;
Zhang, Zhiyong ;
Yang, Yi ;
Zhao, Xiang ;
Zhou, Lei ;
Li, Xiaodan ;
Zou, Shumei ;
Zhang, Ye ;
Li, Xiyan ;
Yang, Lei ;
Guo, Junfeng ;
Dong, Jie ;
Li, Qun ;
Dong, Libo ;
Zhu, Yun ;
Bai, Tian ;
Wang, Shiwen ;
Hao, Pei ;
Yang, Weizhong ;
Zhang, Yanping ;
Han, Jun ;
Yu, Hongjie ;
Li, Dexin ;
Gao, George F. ;
Wu, Guizhen ;
Wang, Yu ;
Yuan, Zhenghong ;
Shu, Yuelong .
NEW ENGLAND JOURNAL OF MEDICINE, 2013, 368 (20) :1888-1897
[37]   Optimisation of one-step desolvation and scale-up of gelatine nanoparticle production [J].
Geh, Katharina J. ;
Hubert, Madlen ;
Winter, Gerhard .
JOURNAL OF MICROENCAPSULATION, 2016, 33 (07) :595-604
[38]   Effect of microneedle design on pain in human volunteers [J].
Gill, Harvinder S. ;
Denson, Donald D. ;
Burris, Brett A. ;
Prausnitz, Mark R. .
CLINICAL JOURNAL OF PAIN, 2008, 24 (07) :585-594
[39]   The skin-resident and migratory immune system in steady state and memory: innate lymphocytes, dendritic cells and T cells [J].
Heath, William R. ;
Carbone, Francis R. .
NATURE IMMUNOLOGY, 2013, 14 (10) :978-985
[40]   Cytotoxic T cell vaccination with PLGA microspheres interferes with influenza A virus replication in the lung and suppresses the infectious disease [J].
Herrmann, Valerie L. ;
Hartmayer, Carmen ;
Planz, Oliver ;
Groettrup, Marcus .
JOURNAL OF CONTROLLED RELEASE, 2015, 216 :121-131