Pinning a Line by Balls or Ovaloids in R3

被引:0
作者
Goaoc, Xavier [1 ]
Koenig, Stefan [2 ]
Petitjean, Sylvain [1 ]
机构
[1] INRIA Nancy LORIA, Project Team VEGAS, Vandoeuvre Les Nancy, France
[2] Tech Univ Munich, Zentrum Math, D-8046 Garching, Germany
关键词
Geometric transversals; Helly-type theorems; Line geometry; Ovaloids; TRANSVERSALS; THEOREM;
D O I
10.1007/s00454-010-9297-5
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We show that if a line l is an isolated line transversal to a finite family F of (possibly intersecting) balls in R-3 and no two balls are externally tangent on l, then there is a subfamily G subset of F of size at most 12 such that l is an isolated line transversal to G. We generalize this result to families of semialgebraic ovaloids.
引用
收藏
页码:303 / 320
页数:18
相关论文
共 19 条
[1]   Line transversals of balls and smallest enclosing cylinders in three dimensions [J].
Agarwal, PK ;
Aronov, B ;
Sharir, M .
DISCRETE & COMPUTATIONAL GEOMETRY, 1999, 21 (03) :373-388
[2]   A Helly-type transversal theorem for n-dimensional unit balls [J].
Ambrus, G ;
Bezdek, A ;
Fodor, F .
ARCHIV DER MATHEMATIK, 2006, 86 (05) :470-480
[3]  
[Anonymous], 2003, Algorithms and Computation in Mathematics
[4]  
[Anonymous], ALGORITHM COMBINAT
[5]   Lines Pinning Lines [J].
Aronov, Boris ;
Cheong, Otfried ;
Goaoc, Xavier ;
Rote, Guenter .
DISCRETE & COMPUTATIONAL GEOMETRY, 2011, 45 (02) :230-260
[6]   Line transversals to disjoint balls [J].
Borcea, Ciprian ;
Goaoc, Xavier ;
Petitjean, Sylvain .
DISCRETE & COMPUTATIONAL GEOMETRY, 2008, 39 (1-3) :158-173
[7]  
Cheong O., 2008, DISCRETE COMPUT GEOM, V1-3, P194
[8]  
Cheong O., ISR J MATH IN PRESS
[9]  
Danzer L., 1957, Arch. Math. (Basel), V8, P347, DOI 10.1007/BF01900144
[10]  
Danzer Ludwig, 1963, P S PURE MATH CONVEX, P101