EFFECTIVE INTERFACE CONDITIONS FOR PROCESSES THROUGH THIN HETEROGENEOUS LAYERS WITH NONLINEAR TRANSMISSION AT THE MICROSCOPIC BULK-LAYER INTERFACE

被引:22
作者
Gahn, Markus [1 ]
Neuss-Radu, Maria [2 ]
Knabner, Peter [2 ]
机构
[1] Heidelberg Univ, Interdisciplinary Ctr Sci Comp IWR, Ctr Modelling & Simulat Biosci BIOMS, Neuenheimer Feld 205, D-69120 Heidelberg, Germany
[2] Friedrich Alexander Univ Erlangen Nurnberg, Appl Math 1, Dept Math, Cauerstr 11, D-91058 Erlangen, Germany
关键词
Homogenization; nonlinear transmission conditions; reaction-diffusion systems; effective interface conditions; unfolding and averaging operator for thin heterogeneous layer; weak and strong two-scale convergence; REACTION-DIFFUSION PROCESSES; PERIODIC UNFOLDING METHOD; HOMOGENIZATION; DOMAINS; CONVERGENCE; DERIVATION; MODEL;
D O I
10.3934/nhm.2018028
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider a system of reaction-diffusion equations in a domain consisting of two bulk regions separated by a thin layer with thickness of order epsilon and a periodic heterogeneous structure. The equations inside the layer depend on epsilon and the diffusivity inside the layer on an additional parameter gamma is an element of [-1, 1]. On the bulk-layer interface, we assume a nonlinear Neumann-transmission condition depending on the solutions on both sides of the interface. For epsilon -> 0, when the thin layer reduces to an interface Sigma between two bulk domains, we rigorously derive macroscopic models with effective conditions across the interface Sigma. The crucial part is to pass to the limit in the nonlinear terms, especially for the traces on the interface between the different compartments. For this purpose, we use the method of two-scale convergence for thin heterogeneous layers, and a Kolmogorov-type compactness result for Banach valued functions, applied to the unfolded sequence in the thin layer.
引用
收藏
页码:609 / 640
页数:32
相关论文
共 18 条
[1]   HOMOGENIZATION AND 2-SCALE CONVERGENCE [J].
ALLAIRE, G .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1992, 23 (06) :1482-1518
[2]   DERIVATION OF THE DOUBLE POROSITY MODEL OF SINGLE-PHASE FLOW VIA HOMOGENIZATION THEORY [J].
ARBOGAST, T ;
DOUGLAS, J ;
HORNUNG, U .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1990, 21 (04) :823-836
[3]   A homogenized model of an underground waste repository including a disturbed zone [J].
Bourgeat, A ;
Marusic-Paloka, E .
MULTISCALE MODELING & SIMULATION, 2005, 3 (04) :918-939
[4]   Modelling of an underground waste disposal site by upscaling [J].
Bourgeat, A ;
Gipouloux, O ;
Marusic-Paloka, E .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2004, 27 (04) :381-403
[5]  
Brezis H., 2011, Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext
[6]   The periodic unfolding method for perforated domains and Neumann sieve models [J].
Cioranescu, D. ;
Damlamian, A. ;
Griso, G. ;
Onofrei, D. .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2008, 89 (03) :248-277
[7]   THE PERIODIC UNFOLDING METHOD IN HOMOGENIZATION [J].
Cioranescu, D. ;
Damlamian, A. ;
Griso, G. .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2008, 40 (04) :1585-1620
[8]   HOMOGENIZATION OF REACTION-DIFFUSION PROCESSES IN A TWO-COMPONENT POROUS MEDIUM WITH NONLINEAR FLUX CONDITIONS AT THE INTERFACE [J].
Gahn, M. ;
Neuss-Radu, M. ;
Knabner, P. .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2016, 76 (05) :1819-1843
[9]  
Gahn M, 2016, STUD U BABES-BOL MAT, V61, P279
[10]   DERIVATION OF EFFECTIVE TRANSMISSION CONDITIONS FOR DOMAINS SEPARATED BY A MEMBRANE FOR DIFFERENT SCALING OF MEMBRANE DIFFUSIVITY [J].
Gahn, Markus ;
Neuss-Radu, Maria ;
Knabner, Peter .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2017, 10 (04) :773-797