Smoc1 and Smoc2 regulate bone formation as downstream molecules of Runx2

被引:18
|
作者
Takahata, Yoshifumi [1 ]
Hagino, Hiromasa [1 ]
Kimura, Ayaka [1 ]
Urushizaki, Mitsuki [1 ]
Kobayashi, Sachi [1 ]
Wakamori, Kanta [1 ]
Fujiwara, Chika [1 ]
Nakamura, Eriko [1 ]
Yu, Kayon [1 ]
Kiyonari, Hiroshi [2 ]
Bando, Kana [2 ]
Murakami, Tomohiko [1 ]
Komori, Toshihisa [3 ]
Hata, Kenji [1 ]
Nishimura, Riko [1 ]
机构
[1] Osaka Univ, Grad Sch Dent, Dept Mol & Cellular Biochem, Osaka, Japan
[2] RIKEN, Ctr Biosyst Dynam Res, Lab Anim Resources & Genet Engn, Tokyo, Hyogo, Japan
[3] Nagasaki Univ, Grad Sch Biomed Sci, Basic & Translat Res Ctr Hard Tissue Dis, Nagasaki, Japan
关键词
GAMMA-AMINOBUTYRIC-ACID; OSTEOBLAST DIFFERENTIATION; BINDING; PROTEIN; CBFA1; MICE; OSTEONECTIN; EXPRESSION; GENE; DISTURBANCE;
D O I
10.1038/s42003-021-02717-7
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Runx2 is an essential transcription factor for bone formation. Although osteocalcin, osteopontin, and bone sialoprotein are well-known Runx2-regulated bone-specific genes, the skeletal phenotypes of knockout (KO) mice for these genes are marginal compared with those of Runx2 KO mice. These inconsistencies suggest that unknown Runx2-regulated genes play important roles in bone formation. To address this, we attempted to identify the Runx2 targets by performing RNA-sequencing and found Smoc1 and Smoc2 upregulation by Runx2. Smoc1 or Smoc2 knockdown inhibited osteoblastogenesis. Smoc1 KO mice displayed no fibula formation, while Smoc2 KO mice had mild craniofacial phenotypes. Surprisingly, Smoc1 and Smoc2 double KO (DKO) mice manifested no skull, shortened tibiae, and no fibulae. Endochondral bone formation was also impaired at the late stage in the DKO mice. Collectively, these results suggest that Smoc1 and Smoc2 function as novel targets for Runx2, and play important roles in intramembranous and endochondral bone formation. Takahata et al. investigate the functional role of SMOC1/2 proteins in skeletal development. They reveal a genetic pathway that includes Bmp2 and Runx2 inducing expression of the paralogous Smoc genes, which may offer novel and effective therapeutic strategies associated with various bone and cartilage diseases.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Runx1 and Runx2 cooperate during sternal morphogenesis
    Kimura, Ayako
    Inose, Hiroyuki
    Yano, Fumiko
    Fujita, Koji
    Ikeda, Toshiyuki
    Sato, Shingo
    Iwasaki, Makiko
    Jinno, Tetsuya
    Ae, Keisuke
    Fukumoto, Seiji
    Takeuchi, Yasuhiro
    Itoh, Hiroshi
    Imamura, Takeshi
    Kawaguchi, Hiroshi
    Chung, Ung-il
    Martin, James F.
    Iseki, Sachiko
    Shinomiya, Ken-ichi
    Takeda, Shu
    DEVELOPMENT, 2010, 137 (07): : 1159 - 1167
  • [22] Runx2 Protein Expression Utilizes the Runx2 P1 Promoter to Establish Osteoprogenitor Cell Number for Normal Bone Formation
    Liu, Julie C.
    Lengner, Christopher J.
    Gaur, Tripti
    Lou, Yang
    Hussain, Sadiq
    Jones, Marci D.
    Borodic, Brent
    Colby, Jennifer L.
    Steinman, Heather A.
    van Wijnen, Andre J.
    Stein, Janet L.
    Jones, Stephen N.
    Stein, Gary S.
    Lian, Jane B.
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2011, 286 (34) : 30057 - 30070
  • [23] SMOC1 silencing suppresses the angiotensin II-induced myocardial fibrosis of mouse myocardial fibroblasts via affecting the BMP2/Smad pathway
    Wang, Yize
    Wu, Xianming
    ONCOLOGY LETTERS, 2018, 16 (03) : 2903 - 2910
  • [24] Serum response factor regulates bone formation via IGF-1 and Runx2 signals
    Chen, Jianfeng
    Yuan, Kaiyu
    Mao, Xia
    Miano, Joseph M.
    Wu, Hui
    Chen, Yabing
    JOURNAL OF BONE AND MINERAL RESEARCH, 2012, 27 (08) : 1659 - 1668
  • [25] SMOC1 and IL-4 and IL-13 Cytokines Interfere with Ca2+ Mobilization in Primary Human Keratinocytes
    Lyubchenko, Taras
    Collins, Hannah K.
    Vang, Kathryn A.
    Leung, Donald Y. M.
    Goleva, Elena
    JOURNAL OF INVESTIGATIVE DERMATOLOGY, 2021, 141 (07) : 1792 - +
  • [26] Genomic occupancy of HLH, AP1 and Runx2 motifs within a nuclease sensitive site of the Runx2 gene
    Hovhannisyan, Hayk
    Zhang, Ying
    Hassan, Mohammad Q.
    Wu, Hai
    Glackin, Carlotta
    Lian, Jane B.
    Stein, Janet L.
    Montecino, Martin
    Stein, Gary S.
    van Wijnen, Andre J.
    JOURNAL OF CELLULAR PHYSIOLOGY, 2013, 228 (02) : 313 - 321
  • [27] Analysis of SMOC2 gene variants in familial and non-familial primary open angle glaucoma Pakistani patients
    Narsani, Ashok
    Khidri, Feriha
    Rafiq, Muhammad
    Bai, Jalpa
    Shaikh, Hina
    Waryah, Yar
    Naqvi, Syed
    Kumari, Preety
    Lohano, Mahesh
    Waryah, Ali
    INTERNATIONAL JOURNAL OF OPHTHALMOLOGY, 2024, 17 (12) : 2185 - 2191
  • [28] Role of Runx2 in breast cancer-mediated bone metastasis
    Vishal, M.
    Swetha, R.
    Thejaswini, G.
    Arumugam, B.
    Selvamurugan, N.
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2017, 99 : 608 - 614
  • [29] Homozygosity Mapping and Candidate Prioritization Identify Mutations, Missed by Whole-Exome Sequencing, in SMOC2, Causing Major Dental Developmental Defects
    Bloch-Zupan, Agnes
    Jamet, Xavier
    Etard, Christelle
    Laugel, Virginie
    Muller, Jean
    Geoffroy, Veronique
    Strauss, Jean-Pierre
    Pelletier, Valerie
    Marion, Vincent
    Poch, Olivier
    Strahle, Uwe
    Stoetzel, Corinne
    Dollfus, Helene
    AMERICAN JOURNAL OF HUMAN GENETICS, 2011, 89 (06) : 773 - 781
  • [30] microRNA-148a in Exosomes Derived from Bone Marrow Mesenchymal Stem Cells Alleviates Cardiomyocyte Apoptosis in Atrial Fibrillation by Inhibiting SMOC2
    Zhang, Weijuan
    Man, Yilong
    Chen, Zhanghu
    MOLECULAR BIOTECHNOLOGY, 2022, 64 (10) : 1076 - 1087