Slow carrier relaxation in tin-based perovskite nanocrystals

被引:79
作者
Dai, Linjie [1 ]
Deng, Zeyu [2 ]
Auras, Florian [1 ]
Goodwin, Heather [1 ]
Zhang, Zhilong [1 ]
Walmsley, John C. [2 ]
Bristowe, Paul D. [2 ]
Deschler, Felix [1 ]
Greenham, Neil C. [1 ]
机构
[1] Univ Cambridge, Cavendish Lab, Cambridge, England
[2] Univ Cambridge, Dept Mat Sci & Met, Cambridge, England
基金
英国工程与自然科学研究理事会; 欧洲研究理事会;
关键词
HALIDE PEROVSKITES; PHONON BOTTLENECK; IODIDE; DYNAMICS; ELECTRON; FORMAMIDINIUM; EFFICIENCY;
D O I
10.1038/s41566-021-00847-2
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Tin-based perovskite nanocrystals with slower than usual relaxation dynamics holds promise for superior lead-free perovskite optoelectronic devices. The conversion efficiency of solar energy in semiconductors is fundamentally limited by ultrafast hot-carrier relaxation processes, and slowing down these processes is critical for improved energy harvesting. Here we report formamidinium tin iodide (FASnI(3)) nanocrystals where quantum confinement effects yield an evolution from a continuous band structure to separate energy states with decreasing nanocrystal size, as observed by transient absorption spectroscopy. The appearance of separate energy levels slows down the relaxation of hot carriers by two orders of magnitude at low injected carrier densities (<1 carrier pair per nanoparticle). The observed build up time of the ground-state bleach at the band edge is two orders of magnitude slower in FASnI(3) nanocrystals than in lead halide perovskite bulk and nanocrystals, which we attribute to a phonon bottleneck effect. Our results highlight the promise of lead-free perovskite nanocrystals for high-efficiency photovoltaic applications operating above the Shockley-Queisser limit.
引用
收藏
页码:696 / 702
页数:7
相关论文
共 38 条
[1]   Emission Properties and Ultrafast Carrier Dynamics of CsPbCl3 Perovskite Nanocrystals [J].
Ahumada-Lazo, Ruben ;
Alanis, Juan A. ;
Parkinson, Patrick ;
Binks, David J. ;
Hardman, Samantha J. O. ;
Griffiths, James T. ;
Rivarola, Florencia Wisnivesky Rocca ;
Humphrey, Colin J. ;
Ducati, Caterina ;
Davis, Nathaniel J. L. K. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2019, 123 (04) :2651-2657
[2]   THEORY OF COULOMB-BLOCKADE OSCILLATIONS IN THE CONDUCTANCE OF A QUANTUM DOT [J].
BEENAKKER, CWJ .
PHYSICAL REVIEW B, 1991, 44 (04) :1646-1656
[3]   INTRINSIC MECHANISM FOR THE POOR LUMINESCENCE PROPERTIES OF QUANTUM-BOX SYSTEMS [J].
BENISTY, H ;
SOTOMAYORTORRES, CM ;
WEISBUCH, C .
PHYSICAL REVIEW B, 1991, 44 (19) :10945-10948
[4]   PHONON-SCATTERING AND ENERGY RELAXATION IN 2-DIMENSIONAL, ONE-DIMENSIONAL, AND ZERO-DIMENSIONAL ELECTRON GASES [J].
BOCKELMANN, U ;
BASTARD, G .
PHYSICAL REVIEW B, 1990, 42 (14) :8947-8951
[5]   Cation-Dependent Hot Carrier Cooling in Halide Perovskite Nanocrystals [J].
Chen, Junsheng ;
Messing, Maria E. ;
Zheng, Kaibo ;
Pullerits, Tonu .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2019, 141 (08) :3532-3540
[6]   Composition-Dependent Hot Carrier Relaxation Dynamics in Cesium Lead Halide (CsPbX3, X = Br and I) Perovskite Nanocrystals [J].
Chung, Heejae ;
Jung, Seok Il ;
Kim, Hyo Jin ;
Cha, Wonhee ;
Sim, Eunji ;
Kim, Dongho ;
Koh, Weon-Kyu ;
Kim, Jiwon .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (15) :4160-4164
[7]   An improved experimental determination of external photoluminescence quantum efficiency [J].
deMello, JC ;
Wittmann, HF ;
Friend, RH .
ADVANCED MATERIALS, 1997, 9 (03) :230-&
[8]   Excited-State Dynamics of a CsPbBr3 Nanocrystal Terminated with Binary Ligands: Sparse Density of States with Giant Spin-Orbit Coupling Suppresses Carrier Cooling [J].
Forde, Ron ;
Inerbaev, Talgat ;
Hobbie, Erik K. ;
Kilin, Dmitri S. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2019, 141 (10) :4388-4397
[9]   Hot carrier cooling mechanisms in halide perovskites [J].
Fu, Jianhui ;
Xu, Qiang ;
Han, Guifang ;
Wu, Bo ;
Huan, Cheng Hon Alfred ;
Leek, Meng Lee ;
Sum, Tze Chien .
NATURE COMMUNICATIONS, 2017, 8
[10]   Reflectivity Effects on Pump-Probe Spectra of Lead Halide Perovskites: Comparing Thin Films versus Nanocrystals [J].
Ghosh, Tufan ;
Aharon, Sigalit ;
Shpatz, Adva ;
Etgar, Lioz ;
Ruhman, Sanford .
ACS NANO, 2018, 12 (06) :5719-5725