GIBBS MEASURES ON PERMUTATIONS OVER ONE-DIMENSIONAL DISCRETE POINT SETS

被引:6
作者
Biskup, Marek [1 ,2 ]
Richthammer, Thomas [3 ,4 ]
机构
[1] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
[2] Univ South Bohemia, Sch Econ, Ceske Budejovice 37005, Czech Republic
[3] Univ Hildesheim, Inst Math, D-31141 Hildesheim, Germany
[4] Univ Hildesheim, Angew Informat, D-31141 Hildesheim, Germany
关键词
Gibbs measures; permutations; extremal decomposition; PERCOLATION TRANSITION;
D O I
10.1214/14-AAP1013
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider Gibbs distributions on permutations of a locally finite infinite set X subset of R, where a permutation sigma of X is assigned (formal) energy Sigma(x is an element of X) V(sigma(x) - x). This is motivated by Feynman's path representation of the quantum Bose gas; the choice X := Z and V(x) := alpha x(2) is of principal interest. Under suitable regularity conditions on the set X and the potential V, we establish existence and a full classification of the infinite-volume Gibbs measures for this problem, including a result on the number of infinite cycles of typical permutations. Unlike earlier results, our conclusions are not limited to small densities and/or high temperatures.
引用
收藏
页码:898 / 929
页数:32
相关论文
共 24 条
[1]   Large deviations for trapped interacting brownian particles and paths [J].
Adams, Stefan ;
Bru, Jean-Bernard ;
Koenig, Wolfgang .
ANNALS OF PROBABILITY, 2006, 34 (04) :1370-1422
[2]   Large systems of path-repellent Brownian motions in a trap at positive temperature [J].
Adams, Stefan ;
Bru, Jean-Bernard ;
Koenig, Wolfgang .
ELECTRONIC JOURNAL OF PROBABILITY, 2006, 11 :460-485
[3]   GEOMETRIC ASPECTS OF QUANTUM SPIN STATES [J].
AIZENMAN, M ;
NACHTERGAELE, B .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 164 (01) :17-63
[4]   A phase transition in the random transposition random walk [J].
Berestycki, Nathanael ;
Durrett, Rick .
PROBABILITY THEORY AND RELATED FIELDS, 2006, 136 (02) :203-233
[5]   The hyperbolic geometry of random transpositions [J].
Berestycki, Nathanael .
ANNALS OF PROBABILITY, 2006, 34 (02) :429-467
[6]   Emergence of giant cycles and slowdown transition in random transpositions and k-cycles [J].
Berestycki, Nathanael .
ELECTRONIC JOURNAL OF PROBABILITY, 2010, 16 :152-173
[7]  
Betz V., 2013, RANDOM PERMUTATIONS
[8]   Spatial Random Permutations and Infinite Cycles [J].
Betz, Volker ;
Ueltschi, Daniel .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 285 (02) :469-501
[9]  
Bogoliubov N., 1947, J. Phys, V11, P23
[10]   ATOMIC THEORY OF THE LAMBDA-TRANSITION IN HELIUM [J].
FEYNMAN, RP .
PHYSICAL REVIEW, 1953, 91 (06) :1291-1301