Multi-step-ahead wind speed forecasting based on a hybrid decomposition method and temporal convolutional networks

被引:124
|
作者
Li, Dan [1 ,2 ]
Jiang, Fuxin [1 ,2 ]
Chen, Min [1 ,2 ,3 ]
Qian, Tao [3 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
[3] Macau Univ Sci & Technol, Macao Ctr Math Sci, Macau 999078, Peoples R China
基金
中国国家自然科学基金;
关键词
Wind speed forecasting; Ensemble patch transform; Complete ensemble empirical mode; decomposition; Temporal convolutional network; Hybrid method; EMPIRICAL MODE DECOMPOSITION; MEMORY NEURAL-NETWORK; WAVELET TRANSFORM; TIME-SERIES; PREDICTION; OPTIMIZATION; ENSEMBLE; ALGORITHM; STRATEGY; PACKET;
D O I
10.1016/j.energy.2021.121981
中图分类号
O414.1 [热力学];
学科分类号
摘要
Recently, the boom in wind power industry has called for the accurate and stable wind speed forecasting, on which reliable wind power generation systems depend heavily. Due to the intermittency and complexity of wind, an appropriate decomposition is proved as a pivotal part in the precise wind speed prediction. On this account, this paper constructs a hybrid decomposition method coupling the ensemble patch transform (EPT) and the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), where EPT is utilized to extract the trend of wind speed, then CEEMDAN is employed to divide the volatility into several fluctuation components with different frequency characteristics. Subsequently, the proposed decomposition method is combined with temporal convolutional networks (TCN) for the individual prediction of the trend and fluctuation components. Ultimately, the forecasted values for the wind speed prediction are obtained by reconstructing the prediction results of all the components. To evaluate the performance of the proposed EPT-CEEMDAN-TCN model, the historical wind speed data from three wind farms across China are used. The experimental results verify the notable effectiveness and necessity of the proposed EPT-CEEMDAN decomposition. In the meanwhile, the results demonstrate the significant superiority of the proposed EPT-CEEMDAN-TCN model on accuracy and stability. (c) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Multi-step-ahead time series forecasting based on CEEMDAN decomposition and temporal convolutional networks
    Ha Binh Minh
    Nguyen Hoang An
    Nguyen Minh Tuan
    2022 INTERNATIONAL CONFERENCE ON ADVANCED COMPUTING AND ANALYTICS (ACOMPA), 2022, : 54 - 59
  • [2] Multi-Step-Ahead Electricity Price Forecasting Based on Temporal Graph Convolutional Network
    Su, Haokun
    Peng, Xiangang
    Liu, Hanyu
    Quan, Huan
    Wu, Kaitong
    Chen, Zhiwen
    MATHEMATICS, 2022, 10 (14)
  • [3] Multi-step-ahead Forecasting of Wind Speed Based on EMD-RBF Model
    Wang, Dong-Feng
    Wang, Fu-Qiang
    Han, Pu
    RENEWABLE AND SUSTAINABLE ENERGY, PTS 1-7, 2012, 347-353 : 2219 - 2222
  • [4] A novel hybrid model for multi-step-ahead forecasting of wind speed based on univariate data feature enhancement
    Wang, Yaqi
    Zhao, Xiaomeng
    Li, Zheng
    Zhu, Wenbo
    Gui, Renzhou
    ENERGY, 2024, 312
  • [5] Multi-Step-Ahead Monthly Streamflow Forecasting Using Convolutional Neural Networks
    Xingsheng Shu
    Yong Peng
    Wei Ding
    Ziru Wang
    Jian Wu
    Water Resources Management, 2022, 36 : 3949 - 3964
  • [6] Multi-Step-Ahead Monthly Streamflow Forecasting Using Convolutional Neural Networks
    Shu, Xingsheng
    Peng, Yong
    Ding, Wei
    Wang, Ziru
    Wu, Jian
    WATER RESOURCES MANAGEMENT, 2022, 36 (11) : 3949 - 3964
  • [7] Multi-Step-Ahead Wind Speed Forecast Method Based on Outlier Correction, Optimized Decomposition, and DLinear Model
    Liu, Jialin
    Gong, Chen
    Chen, Suhua
    Zhou, Nanrun
    MATHEMATICS, 2023, 11 (12)
  • [8] Multi-step-ahead neural networks for flood forecasting
    Chang, Fi-John
    Chiang, Yen-Ming
    Chang, Li-Chiu
    HYDROLOGICAL SCIENCES JOURNAL-JOURNAL DES SCIENCES HYDROLOGIQUES, 2007, 52 (01): : 114 - 130
  • [9] Analysis and application of forecasting models in wind power integration: A review of multi-step-ahead wind speed forecasting models
    Wang, Jianzhou
    Song, Yiliao
    Liu, Feng
    Hou, Ru
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2016, 60 : 960 - 981
  • [10] A Neural Network Approach to Multi-Step-Ahead, Short-Term Wind Speed Forecasting
    Cardenas-Barrera, Julian L.
    Meng, Julian
    Castillo-Guerra, Eduardo
    Chang, Liuchen
    2013 12TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA 2013), VOL 2, 2013, : 243 - 248