Subharmonic oscillation modeling and MISO Volterra series

被引:30
作者
Boaghe, OM [1 ]
Billings, SA [1 ]
机构
[1] Univ Sheffield, Dept Automat Control & Syst Engn, Sheffield S1 3JD, S Yorkshire, England
基金
英国工程与自然科学研究理事会;
关键词
bifurcations; chaos; frequency-response functions; nonlinear oscillations; response spectrum map; subharmonics; Volterra series;
D O I
10.1109/TCSI.2003.813965
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Subharmonic generation is a complex nonlinear phenomenon which can arise from nonlinear oscillations, bifurcation and chaos. It is well known that single-input-single-output Volterra series cannot currently be applied to model systems which exhibit subharmonics. A new modeling alternative is introduced in this paper which overcomes these restrictions by using local multiple input single output Volterra models. The generalized frequency-response functions can then be applied to interpret systems with subharmonics in the frequency domain.
引用
收藏
页码:877 / 884
页数:8
相关论文
共 18 条
[1]   IDENTIFICATION OF MIMO NON-LINEAR SYSTEMS USING A FORWARD-REGRESSION ORTHOGONAL ESTIMATOR [J].
BILLINGS, SA ;
CHEN, S ;
KORENBERG, MJ .
INTERNATIONAL JOURNAL OF CONTROL, 1989, 49 (06) :2157-2189
[2]   The response spectrum map, a frequency domain equivalent to the bifurcation diagram [J].
Billings, SA ;
Boaghe, OM .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2001, 11 (07) :1961-1975
[3]   FADING MEMORY AND THE PROBLEM OF APPROXIMATING NONLINEAR OPERATORS WITH VOLTERRA SERIES [J].
BOYD, S ;
CHUA, LO .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1985, 32 (11) :1150-1161
[4]   Analytical Foundations of Volterra Series [J].
Boyd, Stephen ;
Chua, L. O. ;
Desoer, C. A. .
IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 1984, 1 (03) :243-282
[5]  
CHUA LO, 1979, ELECT CIRCUITS SYST, V3, P257
[6]  
Feigenbaum M. J., 1980, LOS ALAMOS SCI, V1, P4
[7]  
FEIGENBAUM MJ, 1989, UNIVERSALITY CHAOS, P49
[8]  
George D.A., 1959, 355 MIT RES LAB EL
[9]  
Guckenheimer J, 2013, APPL MATH SCI
[10]   NONSTATIONARY VIBRATION OF A ROTATING SHAFT WITH NONLINEAR SPRING CHARACTERISTICS DURING ACCELERATION THROUGH A CRITICAL SPEED - (A CRITICAL SPEED OF A 1/3-ORDER SUBHARMONIC OSCILLATION) [J].
ISHIDA, Y ;
YAMAMOTO, T ;
MURAKAMI, S .
JSME INTERNATIONAL JOURNAL SERIES III-VIBRATION CONTROL ENGINEERING ENGINEERING FOR INDUSTRY, 1992, 35 (03) :360-368