Subharmonic oscillation modeling and MISO Volterra series

被引:30
作者
Boaghe, OM [1 ]
Billings, SA [1 ]
机构
[1] Univ Sheffield, Dept Automat Control & Syst Engn, Sheffield S1 3JD, S Yorkshire, England
基金
英国工程与自然科学研究理事会;
关键词
bifurcations; chaos; frequency-response functions; nonlinear oscillations; response spectrum map; subharmonics; Volterra series;
D O I
10.1109/TCSI.2003.813965
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Subharmonic generation is a complex nonlinear phenomenon which can arise from nonlinear oscillations, bifurcation and chaos. It is well known that single-input-single-output Volterra series cannot currently be applied to model systems which exhibit subharmonics. A new modeling alternative is introduced in this paper which overcomes these restrictions by using local multiple input single output Volterra models. The generalized frequency-response functions can then be applied to interpret systems with subharmonics in the frequency domain.
引用
收藏
页码:877 / 884
页数:8
相关论文
共 18 条
  • [1] IDENTIFICATION OF MIMO NON-LINEAR SYSTEMS USING A FORWARD-REGRESSION ORTHOGONAL ESTIMATOR
    BILLINGS, SA
    CHEN, S
    KORENBERG, MJ
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 1989, 49 (06) : 2157 - 2189
  • [2] The response spectrum map, a frequency domain equivalent to the bifurcation diagram
    Billings, SA
    Boaghe, OM
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2001, 11 (07): : 1961 - 1975
  • [3] FADING MEMORY AND THE PROBLEM OF APPROXIMATING NONLINEAR OPERATORS WITH VOLTERRA SERIES
    BOYD, S
    CHUA, LO
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1985, 32 (11): : 1150 - 1161
  • [4] Analytical Foundations of Volterra Series
    Boyd, Stephen
    Chua, L. O.
    Desoer, C. A.
    [J]. IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 1984, 1 (03) : 243 - 282
  • [5] CHUA LO, 1979, ELECT CIRCUITS SYST, V3, P257
  • [6] Feigenbaum M. J., 1980, LOS ALAMOS SCI, V1, P4
  • [7] FEIGENBAUM MJ, 1989, UNIVERSALITY CHAOS, P49
  • [8] George D.A., 1959, 355 MIT RES LAB EL
  • [9] Guckenheimer J, 2013, APPL MATH SCI
  • [10] NONSTATIONARY VIBRATION OF A ROTATING SHAFT WITH NONLINEAR SPRING CHARACTERISTICS DURING ACCELERATION THROUGH A CRITICAL SPEED - (A CRITICAL SPEED OF A 1/3-ORDER SUBHARMONIC OSCILLATION)
    ISHIDA, Y
    YAMAMOTO, T
    MURAKAMI, S
    [J]. JSME INTERNATIONAL JOURNAL SERIES III-VIBRATION CONTROL ENGINEERING ENGINEERING FOR INDUSTRY, 1992, 35 (03): : 360 - 368