Near infrared laser stimulation of human neural stem cells into neurons on graphene nanomesh semiconductors

被引:105
作者
Akhavan, Omid [1 ,2 ]
Ghaderi, Elham [3 ]
Shirazian, Soheil A. [1 ]
机构
[1] Sharif Univ Technol, Dept Phys, Tehran, Iran
[2] Sharif Univ Technol, Inst Nanosci & Nanotechnol, Tehran, Iran
[3] Div Adv Mat, Nanobiotechnol Res Lab, Tehran, Iran
关键词
Graphene nanomesh; Nanostructures; Stem cells; Neural differentiation; NIR stimulation; Tissue engineering; PHOTOTHERMAL THERAPY; FUNCTIONALIZED GRAPHENE; FIELD STIMULATION; GRAPHITE OXIDE; DIFFERENTIATION; REDUCTION; NANOSHEETS; SHEETS; NANOPARTICLES; GENOTOXICITY;
D O I
10.1016/j.colsurfb.2014.12.027
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Reduced graphene oxide nanomeshes (rGONMs), as p-type semiconductors with band-gap energy of similar to 1 eV, were developed and applied in near infrared (NIR) laser stimulation of human neural stem cells (hNSCs) into neurons. The biocompatibility of the rGONMs in growth of hNSCs was found similar to that of the graphene oxide (GO) sheets. Proliferation of the hNSCs on the GONMs was assigned to the excess oxygen functional groups formed on edge defects of the GONMs, resulting in superhydrophilicity of the surface. Under NIR laser stimulation, the graphene layers (especially the rGONMs) exhibited significant cell differentiations, including more elongations of the cells and higher differentiation of neurons than glia. The higher hNSC differentiation on the rGONM than the reduced GO (rGO) was assigned to the stimulation effects of the low-energy photo excited electrons injected from the rGONM semiconductors into the cells, while the high-energy photoelectrons of the rGO (as a zero band-gap semiconductor) could suppress the cell proliferation and/or even cause cell damages. Using conventional heating of the culture media up to similar to 43 degrees C (the temperature typically reached under the laser irradiation), no significant differentiation was observed in dark. This further confirmed the role of photoelectrons in the hNSC differentiation. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:313 / 321
页数:9
相关论文
共 72 条
[1]   Self-encapsulation of single-texture COSi2 nanolayer by TaSi2 [J].
Akhavan, O. ;
Azimirad, R. ;
Moshfegh, A. Z. .
THIN SOLID FILMS, 2008, 516 (18) :6008-6012
[2]   Bacteriorhodopsin as a superior substitute for hydrazine in chemical reduction of single-layer graphene oxide sheets [J].
Akhavan, O. .
CARBON, 2015, 81 :158-166
[3]   Adverse effects of graphene incorporated in TiO2 photocatalyst on minuscule animals under solar light irradiation [J].
Akhavan, O. ;
Ghaderi, E. ;
Rahimi, K. .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (43) :23260-23266
[4]   Increasing the antioxidant activity of green tea polyphenols in the presence of iron for the reduction of graphene oxide [J].
Akhavan, O. ;
Kalaee, M. ;
Alavi, Z. S. ;
Ghiasi, S. M. A. ;
Esfandiar, A. .
CARBON, 2012, 50 (08) :3015-3025
[5]   Protein Degradation and RNA Efflux of Viruses Photocatalyzed by Graphene-Tungsten Oxide Composite Under Visible Light Irradiation [J].
Akhavan, O. ;
Choobtashani, M. ;
Ghaderi, E. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (17) :9653-9659
[6]   Escherichia coli bacteria reduce graphene oxide to bactericidal graphene in a self-limiting manner [J].
Akhavan, O. ;
Ghaderi, E. .
CARBON, 2012, 50 (05) :1853-1860
[7]   Photocatalytic reduction of graphene oxides hybridized by ZnO nanoparticles in ethanol [J].
Akhavan, O. .
CARBON, 2011, 49 (01) :11-18
[8]   Photodegradation of Graphene Oxide Sheets by TiO2 Nanoparticles after a Photocatalytic Reduction [J].
Akhavan, O. ;
Abdolahad, M. ;
Esfandiar, A. ;
Mohatashamifar, M. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (30) :12955-12959
[9]   The effect of heat treatment on formation of graphene thin films from graphene oxide nanosheets [J].
Akhavan, O. .
CARBON, 2010, 48 (02) :509-519
[10]   Photocatalytic Reduction of Graphene Oxide Nanosheets on TiO2 Thin Film for Photoinactivation of Bacteria in Solar Light Irradiation [J].
Akhavan, O. ;
Ghaderi, E. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (47) :20214-20220