Pulse current charging strategy towards high performance of lithium-oxygen batteries

被引:5
作者
Xiao, Teng [1 ]
Zhou, Zhenkai [1 ]
Cao, Hui [2 ]
Zhang, Jianli [1 ]
Chen, Qiang [1 ]
Hou, Guangya [1 ]
Cao, Huazhen [1 ]
Wen, Ming [3 ]
Tang, Yiping [1 ]
机构
[1] Zhejiang Univ Technol, Coll Mat Sci & Engn, Hangzhou 310014, Peoples R China
[2] REPT Energy Co Ltd, New Airport Ind Area, 205 Binghai Six Rd, Wenzhou 325025, Zhejiang, Peoples R China
[3] Kunming Inst Precious Met, State Key Lab Adv Technol Comprehens Utilizat Pla, Kunming 650106, Yunnan, Peoples R China
基金
中国国家自然科学基金;
关键词
Pulse charging; Oxygen evolution reaction; Overpotential; Cycle performance; METAL-AIR BATTERIES; LI-O-2; BATTERIES; ION BATTERY; ELECTRODE; LIMITATIONS; STABILITY; CLUSTERS;
D O I
10.1016/j.surfin.2021.101106
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Large overpotential and poor cyclability are the main constraints for lithium-oxygen batteries (LOBs), which are usually related to the slow decomposition of the discharge product during oxygen evolution reaction (OER) of charging process. In this paper, a novel method of pulse current charging is developed for solving these problems. The results show, compared with the normal constant current samples, when duty cycle is 50% and frequency is 1 Hz and, the overpotential decreases up to 25% and the cycle life improves more than 4 times. During charging process, pulse current can reduce the concentration polarization and promote the decomposition of Li2O2, and increase the reaction kinetics of OER process, leading to the reduction of overpotential and improvement of electrochemical performance.
引用
收藏
页数:8
相关论文
共 46 条
[1]   The Impact of Pulse Charging Parameters on the Life Cycle of Lithium-Ion Polymer Batteries [J].
Amanor-Boadu, J. M. ;
Guiseppi-Elie, A. ;
Sanchez-Sinencio, E. .
ENERGIES, 2018, 11 (08)
[2]   Interactions of Dimethoxy Ethane with Li2O2 Clusters and Likely Decomposition Mechanisms for Li-O2 Batteries [J].
Assary, Rajeev S. ;
Lau, Kah Chun ;
Amine, Khalil ;
Sun, Yang-Kook ;
Curtiss, Larry A. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (16) :8041-8049
[3]   Predicting Solvent Stability in Aprotic Electrolyte Li-Air Batteries: Nucleophilic Substitution by the Superoxide Anion Radical (O2•-) [J].
Bryantsev, Vyacheslav S. ;
Giordani, Vincent ;
Walker, Wesley ;
Blanco, Mario ;
Zecevic, Strahinja ;
Sasaki, Kenji ;
Uddin, Jasim ;
Addison, Dan ;
Chase, Gregory V. .
JOURNAL OF PHYSICAL CHEMISTRY A, 2011, 115 (44) :12399-12409
[4]   Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts [J].
Cheng, Fangyi ;
Chen, Jun .
CHEMICAL SOCIETY REVIEWS, 2012, 41 (06) :2172-2192
[5]   Effects of ultrasound on lithium metal rechargeable battery characteristics at high charging rate [J].
Ding, F ;
Zhang, CF ;
Hu, XG .
ELECTROCHEMISTRY COMMUNICATIONS, 2005, 7 (05) :552-556
[6]   Positive Electrode Materials for Li-Ion and Li-Batteries [J].
Ellis, Brian L. ;
Lee, Kyu Tae ;
Nazar, Linda F. .
CHEMISTRY OF MATERIALS, 2010, 22 (03) :691-714
[7]   Optimal pulse-modulated Lithium-ion battery charging: Algorithms and simulation [J].
Fang, Huazhen ;
Depcik, Christopher ;
Lvovich, Vadim .
JOURNAL OF ENERGY STORAGE, 2018, 15 :359-367
[8]   The Lithium-Oxygen Battery with Ether-Based Electrolytes [J].
Freunberger, Stefan A. ;
Chen, Yuhui ;
Drewett, Nicholas E. ;
Hardwick, Laurence J. ;
Barde, Fanny ;
Bruce, Peter G. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2011, 50 (37) :8609-8613
[9]   Ultrasonic enhancement of battery diffusion [J].
Hilton, R. ;
Dornbusch, D. ;
Branson, K. ;
Tekeei, A. ;
Suppes, G. J. .
ULTRASONICS SONOCHEMISTRY, 2014, 21 (02) :901-907
[10]   Recycling Application of Li-MnO2 Batteries as Rechargeable Lithium-Air Batteries [J].
Hu, Yuxiang ;
Zhang, Tianran ;
Cheng, Fangyi ;
Zhao, Qing ;
Han, Xiaopeng ;
Chen, Jun .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (14) :4338-4343