Development of a CNS-permeable reactivator for nerve agent exposure: an iterative, multi-disciplinary approach

被引:15
作者
Bennion, Brian J. [1 ]
Malfatti, Michael A. [1 ]
Be, Nicholas A. [1 ]
Enright, Heather A. [1 ]
Hok, Saphon [2 ,3 ]
Cadieux, C. Linn [4 ]
Carpenter, Timothy S. [1 ]
Lao, Victoria [1 ]
Kuhn, Edward A. [1 ]
McNerney, M. Windy [1 ,6 ,7 ]
Lightstone, Felice C. [1 ]
Nguyen, Tuan H. [5 ]
Valdez, Carlos A. [2 ,3 ]
机构
[1] Lawrence Livermore Natl Lab, Biosci & Biotechnol Div, Livermore, CA 94550 USA
[2] Lawrence Livermore Natl Lab, Nucl & Chem Sci Div, Livermore, CA 94550 USA
[3] Lawrence Livermore Natl Lab, Forens Sci Ctr, Livermore, CA 94550 USA
[4] US Army, Med Res Inst Chem Def, Aberdeen, MD 21010 USA
[5] Lawrence Livermore Natl Lab, Global Secur Directorate, Livermore, CA 94550 USA
[6] Vet Affairs, Mental Illness Res Educ & Clin Ctr, Palo Alto, CA 94304 USA
[7] Stanford Univ, Dept Psychiat, Sch Med, Stanford, CA 94305 USA
关键词
ORGANOPHOSPHATE-INHIBITED HUMAN; PHENOXYALKYL PYRIDINIUM OXIMES; IN-VITRO; P-GLYCOPROTEIN; BRAIN; ACETYLCHOLINESTERASE; SARIN; BUTYRYLCHOLINESTERASE; PRALIDOXIME; MEMBRANE;
D O I
10.1038/s41598-021-94963-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Nerve agents have experienced a resurgence in recent times with their use against civilian targets during the attacks in Syria (2012), the poisoning of Sergei and Yulia Skripal in the United Kingdom (2018) and Alexei Navalny in Russia (2020), strongly renewing the importance of antidote development against these lethal substances. The current standard treatment against their effects relies on the use of small molecule-based oximes that can efficiently restore acetylcholinesterase (AChE) activity. Despite their efficacy in reactivating AChE, the action of drugs like 2-pralidoxime (2-PAM) is primarily limited to the peripheral nervous system (PNS) and, thus, provides no significant protection to the central nervous system (CNS). This lack of action in the CNS stems from their ionic nature that, on one end makes them very powerful reactivators and on the other renders them ineffective at crossing the Blood Brain Barrier (BBB) to reach the CNS. In this report, we describe the use of an iterative approach composed of parallel chemical and in silico syntheses, computational modeling, and a battery of detailed in vitro and in vivo assays that resulted in the identification of a promising, novel CNS-permeable oxime reactivator. Additional experiments to determine acute and chronic toxicity are ongoing.
引用
收藏
页数:16
相关论文
共 60 条
[1]   Structure of a prereaction complex between the nerve agent sarin, its biological target acetylcholinesterase, and the antidote HI-6 [J].
Allgardsson, Anders ;
Berg, Lotta ;
Akfur, Christine ;
Hornberg, Andreas ;
Worek, Franz ;
Linusson, Anna ;
Ekstrom, Fredrik J. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (20) :5514-5519
[2]   The 'aromatic patch' of three proximal residues in the human acetylcholinesterase active centre allows for versatile interaction modes with inhibitors [J].
Ariel, N ;
Ordentlich, A ;
Barak, D ;
Bino, T ;
Velan, B ;
Shafferman, A .
BIOCHEMICAL JOURNAL, 1998, 335 :95-102
[3]   Analysis of inhibition, reactivation and aging kinetics of highly toxic organophosphorus compounds with human and pig acetylcholinesterase [J].
Aurbek, N. ;
Thiermann, H. ;
Szinicz, L. ;
Eyer, P. ;
Worek, F. .
TOXICOLOGY, 2006, 224 (1-2) :91-99
[4]   Evaluation of microdosing to assess pharmacokinetic linearity in rats using liquid chromatography-tandem mass spectrometry [J].
Balani, SK ;
Nagaraja, NV ;
Qian, MG ;
Costa, AO ;
Daniels, JS ;
Yang, H ;
Shimoga, PR ;
Wu, JT ;
Gan, LS ;
Lee, FW ;
Miwa, GT .
DRUG METABOLISM AND DISPOSITION, 2006, 34 (03) :384-388
[5]   Reaction profiles of the interaction between sarin and acetylcholinesterase and the S203C mutant: Model nucleophiles and QM/MM potential energy surfaces [J].
Beck, Jeremy M. ;
Hadad, Christopher M. .
CHEMICO-BIOLOGICAL INTERACTIONS, 2010, 187 (1-3) :220-224
[6]   Predicting a Drug's Membrane Permeability: A Computational Model Validated With in Vitro Permeability Assay Data [J].
Bennion, Brian J. ;
Be, Nicholas A. ;
McNerney, M. Windy ;
Lao, Victoria ;
Carlson, Emma M. ;
Valdez, Carlos A. ;
Malfatti, Michael A. ;
Enright, Heather A. ;
Nguyen, Tuan H. ;
Lightstone, Felice C. ;
Carpenter, Timothy S. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2017, 121 (20) :5228-5237
[7]   A Wrench in the Works of Human Acetylcholinesterase: Soman Induced Conformational Changes Revealed by Molecular Dynamics Simulations [J].
Bennion, Brian J. ;
Essiz, Sebnem G. ;
Lau, Edmond Y. ;
Fattebert, Jean-Luc ;
Emigh, Aiyana ;
Lightstone, Felice C. .
PLOS ONE, 2015, 10 (04)
[8]   Pharmacokinetics of Three Oximes in a Guinea Pig Model and Efficacy of Combined Oxime Therapy [J].
Bohnert, Sara ;
van den Berg, Roland M. ;
Mikler, John ;
Klaassen, Steven D. ;
Joosen, Marloes J. A. .
TOXICOLOGY LETTERS, 2020, 324 :86-94
[9]   Probing the activity of a non-oxime reactivator for acetylcholinesterase inhibited by organophosphorus nerve agents [J].
Cadieux, C. Linn ;
Wang, Haoyu ;
Zhang, Yuchen ;
Koenig, Jeffrey A. ;
Shih, Tsung-Ming ;
McDonough, John ;
Koh, John ;
Cerasoli, Douglas .
CHEMICO-BIOLOGICAL INTERACTIONS, 2016, 259 :133-141
[10]   A Method to Predict Blood-Brain Barrier Permeability of Drug-Like Compounds Using Molecular Dynamics Simulations [J].
Carpenter, Timothy S. ;
Kirshner, Daniel A. ;
Lau, Edmond Y. ;
Wong, Sergio E. ;
Nilmeier, Jerome P. ;
Lightstone, Felice C. .
BIOPHYSICAL JOURNAL, 2014, 107 (03) :630-641