Adaptive generalized projective synchronization in different chaotic systems based on parameter identification

被引:42
作者
Li, Rui-Hong [1 ]
Xu, Wei [1 ]
Li, Shuang [1 ]
机构
[1] Northwestern Polytech Univ, Dept Appl Math, Xian 710072, Peoples R China
关键词
generalized projective synchronization; parameter identification; different chaotic systems;
D O I
10.1016/j.physleta.2007.03.025
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this Letter. the generalized projective synchronization of different chaotic systems with unknown parameters is investigated. By Lyapunov stability theory. the adaptive control method is proposed to achieve above synchronization phenomenon. Meanwhile, according to the invariance principle of differential equations, unknown parameter can be estimated accurately. The schemes are successfully applied to two groups of examples: the anti-phase synchronization between Lorenz system and Chen system; the complete synchronization between hyper-chaotic system and -eneralized Loren system. The corresponding numerical results are presented to verify the effectiveness of this method. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:199 / 206
页数:8
相关论文
共 24 条
[1]   Breaking projective chaos synchronization secure communication using filtering and generalized synchronization [J].
Alvarez, G ;
Li, SJ ;
Montoya, F ;
Pastor, G ;
Romera, M .
CHAOS SOLITONS & FRACTALS, 2005, 24 (03) :775-783
[2]  
[Anonymous], 2002, NONLINEAR SYSTEMS
[3]   Secure digital communication using controlled projective synchronisation of chaos [J].
Chee, CY ;
Xu, DL .
CHAOS SOLITONS & FRACTALS, 2005, 23 (03) :1063-1070
[4]  
CHEN GR, 2003, SYNAMICS LORENZ FAMI
[5]   Adaptive synchronization of uncertain Rossler hyperchaotic system based on parameter identification [J].
Chen, SH ;
Hu, J ;
Wang, CP ;
Lü, JH .
PHYSICS LETTERS A, 2004, 321 (01) :50-55
[6]   STABILITY THEORY OF SYNCHRONIZED MOTION IN COUPLED-OSCILLATOR SYSTEMS [J].
FUJISAKA, H ;
YAMADA, T .
PROGRESS OF THEORETICAL PHYSICS, 1983, 69 (01) :32-47
[7]   Chaos synchronization and parameter identification for gyroscope system [J].
Ge, ZM ;
Lee, JK .
APPLIED MATHEMATICS AND COMPUTATION, 2005, 163 (02) :667-682
[8]  
Gopalsamy K., 2013, Stability and Oscillations in Delay Differential Equations of Population Dynamics, V74
[9]   Reduced-order synchronization of chaotic systems with parameters unknown [J].
Ho, MC ;
Hung, YC ;
Liu, ZY ;
Jiang, IM .
PHYSICS LETTERS A, 2006, 348 (3-6) :251-259
[10]   Parameters identification and adaptive full state hybrid projective synchronization of chaotic (hyper-chaotic) systems [J].
Hu, Manfeng ;
Xu, Zhenyuan ;
Zhang, Rong ;
Hu, Aihua .
PHYSICS LETTERS A, 2007, 361 (03) :231-237