Robust adaptive fault tolerant control for a linear cascaded ODE-beam system

被引:111
作者
Liu, Zhijie [1 ]
Liu, Jinkun [1 ]
He, Wei [2 ]
机构
[1] Beihang Univ, Sch Automat Sci & Elect Engn, Beijing 100191, Peoples R China
[2] Univ Sci & Technol Beijing, Sch Automat & Elect Engn, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
Cascaded systems; Distributed parameter system; Euler-Bernoulli beam; Fault tolerant control; Actuator failures; ACTUATOR FAILURE COMPENSATION; OUTPUT-FEEDBACK CONTROL; BOUNDARY CONTROL; NONLINEAR-SYSTEMS; INPUT SATURATION; TRACKING CONTROL; STATE-FEEDBACK; DESIGN;
D O I
10.1016/j.automatica.2018.09.021
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we present fault tolerant control design for a class of cascaded systems described by ordinary differential equations (ODEs) and an Euler-Bernoulli beam (EBB). The objective of this study is to design a robust adaptive fault tolerant control such that the global stability of the resulting closed loop cascaded system is ensured and asymptotic tracking can be achieved subject to actuator failures, parameter uncertainty and external disturbances. The Lyapunov's direct method is used to design the control schemes and prove the stability of the closed-loop system. Finally, the results are illustrated using numerical simulations for control performance verification. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:42 / 50
页数:9
相关论文
共 28 条
[1]   Passive Actuators' Fault-Tolerant Control for Affine Nonlinear Systems [J].
Benosman, M. ;
Lum, K. -Y. .
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2010, 18 (01) :152-163
[2]  
Boskovic J. D., 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251), P1920, DOI 10.1109/ACC.1999.786187
[3]  
De Queiroz M.S., 2012, Lyapunov-based control of mechanical systems
[4]   Boundary control of three-dimensional inextensible marine risers [J].
Do, K. D. ;
Pan, J. .
JOURNAL OF SOUND AND VIBRATION, 2009, 327 (3-5) :299-321
[5]   XDist: an effective XML keyword search system with re-ranking model based on keyword distribution [J].
Gao Ning ;
Deng ZhiHong ;
Lu ShengLong .
SCIENCE CHINA-INFORMATION SCIENCES, 2014, 57 (05) :1-17
[6]   Lyapunov approach to the boundary stabilisation of a beam equation with boundary disturbance [J].
Guo, Bao-Zhu ;
Kang, Wen .
INTERNATIONAL JOURNAL OF CONTROL, 2014, 87 (05) :925-939
[7]   Boundary observer design for hyperbolic PDE-ODE cascade systems [J].
Hasan, Agus ;
Aamo, Ole Morten ;
Krstic, Miroslav .
AUTOMATICA, 2016, 68 :75-86
[8]   Unified iterative learning control for flexible structures with input constraints [J].
He, Wei ;
Meng, Tingting ;
He, Xiuyu ;
Ge, Shuzhi Sam .
AUTOMATICA, 2018, 96 :326-336
[9]   Iterative Learning Control for a Flapping Wing Micro Aerial Vehicle Under Distributed Disturbances [J].
He, Wei ;
Meng, Tingting ;
He, Xiuyu ;
Sun, Changyin .
IEEE TRANSACTIONS ON CYBERNETICS, 2019, 49 (04) :1524-1535
[10]   Boundary Vibration Control of Variable Length Crane Systems in Two-Dimensional Space With Output Constraints [J].
He, Xiuyu ;
He, Wei ;
Shi, Jing ;
Sun, Changyin .
IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2017, 22 (05) :1952-1962