Classification of singular points of perturbed quadratic systems

被引:0
作者
Aghajani, Asadollah [1 ]
Mirafzal, Mohsen [1 ]
机构
[1] Iran Univ Sci & Technol, Sch Math, Tehran 1684413114, Iran
来源
INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS | 2021年 / 12卷 / 02期
关键词
Quadratic system; Classification of singular points;
D O I
10.22075/ijnaa.2018.13063.1672
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the following two-dimensional differential system: {(x) over dot =ax(2) + bxy + cy(2) + Phi(x,y), (y) over dot = dx(2) + exy + fy(2) + Psi(x,y), in which lim((x,y)) (->)( (0,0) )Phi(x,y)/x(2) +y(2) = lim((x,y)) (->) ((0,) (0)) Psi(x,y)/x(2)+y(2) = 0 and Delta = (af - cd)(2) - (ae - bd)(bf - ce) not equal 0. By calculating Poincare index and using Bendixson formula we will find all the possibilities under definite conditions for classifying the system by means of kinds of sectors around the origin which is an equilibrium point of degree two.
引用
收藏
页码:1817 / 1825
页数:9
相关论文
共 9 条
[1]  
Boularas D., 2001, Qual. Theory Dyn. Syst, V2, P93
[2]   CLASSIFICATION AND ANALYSIS OF 2-DIMENSIONAL REAL HOMOGENEOUS QUADRATIC DIFFERENTIAL-EQUATION SYSTEMS [J].
DATE, T .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1979, 32 (03) :311-334
[3]   Structural stability of planar homogeneous polynomial vector fields: Applications to critical points and to infinity [J].
Llibre, J ;
delRio, JSP ;
Rodriguez, JA .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1996, 125 (02) :490-520
[4]  
Lyagina L.S, MAT NAUK, V6
[5]  
Markus L., 1960, Ann. of Math. Stud., V45, P185
[6]  
Nadjafikhah M., 2010, MATH SCI Q J, V4, P371
[7]  
Sibirskii C.S., 1976, ALGEBRAIC INVARIANTS
[8]  
Sibirskii C.S., 1988, NONLINEAR SCI THEORY
[9]  
Zhi-Fen Z., 2006, AM MATH SOC