Calculation of the Statistical Properties in Intermittency Using the Natural Invariant Density

被引:2
作者
Elaskar, Sergio [1 ,2 ]
del Rio, Ezequiel [3 ]
Lorenzon, Denis [2 ,4 ]
机构
[1] Univ Nacl Cordoba, FCEFyN, Dept Aeronaut, Inst Estudios Avanzados Ingn & Tecnol IDIT, RA-5000 Cordoba, Argentina
[2] Consejo Nacl Invest Cient & Tecn, RA-5000 Cordoba, Argentina
[3] Univ Politecn Madrid, ETSIAE, Dept Fis Aplicada, Madrid 28040, Spain
[4] Univ Nacl Cordoba, Inst Estudios Avanzados Ingn & Tecnol IDIT, RA-5000 Cordoba, Argentina
来源
SYMMETRY-BASEL | 2021年 / 13卷 / 06期
关键词
chaotic intermittency; maps; reinjection probability density function; invariant density; REINJECTION PROBABILITY DENSITY; I INTERMITTENCY; TRANSITION; SYSTEMS; CHAOS;
D O I
10.3390/sym13060935
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We use the natural invariant density of the map and the Perron-Frobenius operator to analytically evaluate the statistical properties for chaotic intermittency. This study can be understood as an improvement of the previous ones because it does not introduce assumptions about the reinjection probability density function in the laminar interval or the map density at pre-reinjection points. To validate the new theoretical equations, we study a symmetric map and a non-symmetric one. The cusp map has symmetry about x=0, but the Manneville map has no symmetry. We carry out several comparisons between the theoretical equations here presented, the M function methodology, the classical theory of intermittency, and numerical data. The new theoretical equations show more accuracy than those calculated with other techniques.
引用
收藏
页数:18
相关论文
共 42 条
[1]  
Beck C., 1993, Thermodynamics of Chaotic Systems
[2]  
Burden R, 2014, NUMERICAL ANAL, V10th ed.
[3]  
Chian A., 2007, Complex System Approach to Economic Dynamics. Lecture Notes in Economics and Mathematical Systems
[4]   Flow Intermittency, Dispersion, and Correlated Continuous Time Random Walks in Porous Media [J].
de Anna, Pietro ;
Le Borgne, Tanguy ;
Dentz, Marco ;
Tartakovsky, Alexandre M. ;
Bolster, Diogo ;
Davy, Philippe .
PHYSICAL REVIEW LETTERS, 2013, 110 (18)
[5]   Type III intermittency without characteristic relation [J].
del Rio, Ezequiel ;
Elaskar, Sergio .
CHAOS, 2021, 31 (04)
[6]   Experimental Results Versus Computer Simulations of Noisy Poincare Maps in an Intermittency Scenario [J].
del Rio, Ezequiel ;
Elaskar, Sergio .
REGULAR & CHAOTIC DYNAMICS, 2020, 25 (03) :281-294
[7]   Experimental evidence of power law reinjection in chaotic intermittency [J].
del Rio, Ezequiel ;
Elaskar, Sergio .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2018, 64 :122-134
[8]   On the Theory of Intermittency in 1D Maps [J].
del Rio, Ezequiel ;
Elaskar, Sergio .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2016, 26 (14)
[9]   Laminar length and characteristic relation in Type-I intermittency [J].
del Rio, Ezequiel ;
Elaskar, Sergio ;
Donoso, Jose M. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2014, 19 (04) :967-976
[10]   Theory of intermittency applied to classical pathological cases [J].
del Rio, Ezequiel ;
Elaskar, Sergio ;
Makarov, Valeri A. .
CHAOS, 2013, 23 (03)