FRAMES OF SUBSPACES FOR BANACH SPACES

被引:11
作者
Jain, P. K. [1 ]
Kaushik, S. K. [1 ]
Kumar, Varinder
机构
[1] Univ Delhi, Dept Math, Kirorimal Coll, Delhi 110007, India
关键词
Frame; Banach frame; frame of subspaces; ATOMIC DECOMPOSITIONS; FUSION FRAMES; VECTORS;
D O I
10.1142/S0219691310003481
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Frames of subspaces for Banach spaces have been introduced and studied. Examples and counter-examples to distinguish various types of frames of subspaces have been given. It has been proved that if a Banach space has a Banach frame, then it also has a frame of subspaces. Also, a necessary and sufficient condition for a sequence of projections, associated with a frame of subspaces, to be unique has been given. Finally, we consider complete frame of subspaces and prove that every weakly compactly generated Banach space has a complete frame of subspaces.
引用
收藏
页码:243 / 252
页数:10
相关论文
共 25 条
[1]   Wavelets on irregular grids with arbitrary dilation matrices and frame atoms for L2 (Rd) [J].
Aldroubi, A ;
Cabrelli, C ;
Molter, UM .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2004, 17 (02) :119-140
[2]   STUCTURE OF WEAKLY COMPACT SETS IN BANACH SPACES [J].
AMIR, D ;
LINDENST.J .
ANNALS OF MATHEMATICS, 1968, 88 (01) :35-&
[3]   Finite normalized tight frames [J].
Benedetto, JJ ;
Fickus, M .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2003, 18 (2-4) :357-385
[4]  
Casazza P. G., 2004, CONTEMP MATH-SINGAP, V345, P87, DOI [10.1090/conm/345/06242, DOI 10.1090/conm/345/06242]
[5]  
Casazza PG, 2008, CONTEMP MATH, V464, P149
[6]   Fusion frames and distributed processing [J].
Casazza, Peter G. ;
Kutyniok, Gitta ;
Li, Shidong .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2008, 25 (01) :114-132
[7]  
Casazza PG., 1999, CONT MATH, V247, P149, DOI DOI 10.1090/C0NM/247/03801.MR1738089
[8]   Oblique dual frames and shift-invariant spaces [J].
Christensen, O ;
Eldar, YC .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2004, 17 (01) :48-68
[9]   EXTENSIONS OF HARDY SPACES AND THEIR USE IN ANALYSIS [J].
COIFMAN, RR ;
WEISS, G .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1977, 83 (04) :569-645
[10]   PAINLESS NONORTHOGONAL EXPANSIONS [J].
DAUBECHIES, I ;
GROSSMANN, A ;
MEYER, Y .
JOURNAL OF MATHEMATICAL PHYSICS, 1986, 27 (05) :1271-1283