A 1.8-V 0.7 ppm/°C high order temperature-compensated CMOS current reference

被引:7
|
作者
Lu, Yang [1 ]
Zhang, Bo [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Microelect & Solid State Elect, Chengdu 610054, Peoples R China
关键词
CMOS; bandgap current reference; curvature-compensated; temperature-compensation; temperature coefficient;
D O I
10.1007/s10470-007-9053-9
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
A high order curvature compensation technique for current reference generator which exploits the I-V characteristic of MOS to achieve I-SC (T (m)) (m >= 2) is described. I-SC (T-m ) is a self-compensated current which corrects its negative three-order TC (Temperature Coefficient) and linear TC by itself. Then, I (T-2) is achieved also by exploiting the I-V characteristic of MOS, for correcting the other negative high order parts of I-SC (T-m). This circuit operates on a 1.8 V power supply and is compatible with a standard n-well 0.5-mu m digital CMOS process. The circuit realizes a temperature coefficient of 0.7 ppm/degrees C, a deviation of the simulated output current of 0.011% from -20 degrees C to + 150 degrees C and 97.5 dB PSRR through HSPICE simulation.
引用
收藏
页码:175 / 179
页数:5
相关论文
共 50 条
  • [41] A 1.2V supply 0.58 ppm/°C CMOS bandgap voltage reference
    Hu, Jinlong
    Xu, Huachao
    Zhang, Yuanzhi
    Sun, Jie
    Du, Tao
    Lu, Chao
    Li, Guofeng
    IEICE ELECTRONICS EXPRESS, 2018, 15 (16):
  • [42] A High-Order Temperature-Compensated Subthreshold Voltage Reference Using Channel Length Modulation Compensation Technique
    Arvind Thakur
    Rishikesh Pandey
    Shireesh Kumar Rai
    Wireless Personal Communications, 2022, 126 : 263 - 284
  • [43] A 10ppm/°C 1.8V Piecewise Curvature-corrected Bandgap Reference in 0.5μm CMOS
    Li Jing-hu
    Zhang Xing-bao
    Yu Ming-yan
    Han Liang
    2009 ASIA PACIFIC CONFERENCE ON POSTGRADUATE RESEARCH IN MICROELECTRONICS AND ELECTRONICS (PRIMEASIA 2009), 2009, : 416 - 419
  • [44] A 2-V 23-μA 5.3-ppm/°C curvature-compensated CMOS bandgap voltage reference
    Leung, KN
    Mok, PKT
    Leung, CY
    IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2003, 38 (03) : 561 - 564
  • [45] A 1.5 ± 0.39 ppm/°C Temperature-Compensated LC Oscillator Using Constant-Biased Varactors
    Wang, Yong
    Chai, Kevin T. C.
    Mu, Xiaojing
    Je, Minkyu
    Goh, Wang Ling
    IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2015, 25 (02) : 130 - 132
  • [46] An 8 GHz real-time temperature-compensated PLL with 20.8 ppm/°C temperature coefficient for SerDes applications
    Ding, Li
    Wu, Ke
    Jin, Jing
    Zhou, Jianjun
    MICROELECTRONICS JOURNAL, 2021, 117
  • [47] A 1.8ppm/°C Low Temperature Coefficient Curvature Compensated Bandgap for the Low Voltage Application
    Yang, Chun
    Cui, Xiaole
    Wang, Bo
    Lee, Chung Len
    2013 IEEE INTERNATIONAL CONFERENCE OF ELECTRON DEVICES AND SOLID-STATE CIRCUITS (EDSSC), 2013,
  • [48] A 1.6-V 25-μA 5-ppm/°C Curvature-Compensated Bandgap Reference
    Zhou, Ze-Kun
    Shi, Yue
    Huang, Zhi
    Zhu, Pei-Sheng
    Ma, Ying-Qian
    Wang, Yong-Chun
    Chen, Zao
    Ming, Xin
    Zhang, Bo
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2012, 59 (04) : 677 - 684
  • [49] A 1.2 V, 3.0 ppm/°C, 3.6 μA CMOS bandgap reference with novel 3-order curvature compensation
    Liu, Lianxi
    Huang, Wenbin
    Mu, Junchao
    Zhu, Zhangming
    Yang, Yintang
    MICROELECTRONICS JOURNAL, 2018, 72 : 49 - 57
  • [50] A 65-nm CMOS Temperature-Compensated Mobility-Based Frequency Reference for Wireless Sensor Networks
    Sebastiano, Fabio
    Breems, Lucien J.
    Makinwa, Kofi A. A.
    Drago, Salvatore
    Leenaerts, Domine M. W.
    Nauta, Bram
    IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2011, 46 (07) : 1544 - 1552