Postmaneuver Collision Probability Estimation Using Sparse Polynomial Chaos Expansions

被引:37
作者
Jones, Brandon A. [1 ]
Parrish, Nathan [1 ]
Doostan, Alireza [2 ]
机构
[1] Univ Colorado, Colorado Ctr Astrodynam Res, Boulder, CO 80309 USA
[2] Univ Colorado, Dept Aerosp Engn Sci, Boulder, CO 80309 USA
关键词
SIGNAL RECOVERY; IMPLEMENTATION; APPROXIMATIONS; DECOMPOSITION; SYSTEMS;
D O I
10.2514/1.G000595
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
This paper describes the use of polynomial chaos expansions to approximate the probability of a collision between two satellites after at least one performs a translation maneuver. Polynomial chaos provides a computationally efficient means to generate an approximate solution to a stochastic differential equation without introducing any assumptions on the a posteriori distribution. The stochastic solution then allows for orbit state uncertainty propagation. For the maneuvering spacecraft in the presented scenarios, the polynomial chaos expansion is sparse, allowing for the use of compressive sampling methods to improve solution tractability. This paper first demonstrates the use of these techniques for possible intraformation collisions for the Magnetospheric Multi-Scale mission. The techniques are then applied to a potential collision with debris in low Earth orbit. Results demonstrate that these polynomial chaos-based methods provide a Monte Carlo-like estimate of the collision probability, including adjustments for a spacecraft shape model, with only minutes of computation cost required for scenarios with a probability of collision as low as 10(-6). A graphics processing unit implementation of the polynomial chaos expansion analysis further reduces the computation time for the scenarios presented.
引用
收藏
页码:1425 / 1437
页数:13
相关论文
共 52 条
  • [1] Alfano S, 2005, J ASTRONAUT SCI, V53, P103
  • [2] Galerkin finite element approximations of stochastic elliptic partial differential equations
    Babuska, I
    Tempone, R
    Zouraris, GE
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2004, 42 (02) : 800 - 825
  • [3] Berry MM, 2004, J ASTRONAUT SCI, V52, P331
  • [4] Brent R. P., 2002, ALGORITHMS MINIMIZAT
  • [5] From Sparse Solutions of Systems of Equations to Sparse Modeling of Signals and Images
    Bruckstein, Alfred M.
    Donoho, David L.
    Elad, Michael
    [J]. SIAM REVIEW, 2009, 51 (01) : 34 - 81
  • [6] Candès EJ, 2008, IEEE SIGNAL PROC MAG, V25, P21, DOI 10.1109/MSP.2007.914731
  • [7] Stable signal recovery from incomplete and inaccurate measurements
    Candes, Emmanuel J.
    Romberg, Justin K.
    Tao, Terence
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2006, 59 (08) : 1207 - 1223
  • [8] Carpenter J. R., 2013, AIAA GUID NAV CONTR, DOI [10.2514/ 6.2013- 5187, DOI 10.2514/6.2013-5187]
  • [9] Carpenter J. R., 2012, FLIGHT DYNAMICS
  • [10] Atomic decomposition by basis pursuit
    Chen, SSB
    Donoho, DL
    Saunders, MA
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 20 (01) : 33 - 61