Knowledge Graphs for Semantically Integrating Cyber-Physical Systems

被引:16
作者
Grangel-Gonzalez, Irlan [1 ,2 ]
Halilaj, Lavdim [1 ,2 ]
Vidal, Maria-Esther [3 ,4 ]
Rana, Omar [1 ]
Lohmann, Steffen [2 ]
Auer, Soeren [3 ,4 ]
Mueller, Andreas W. [5 ]
机构
[1] Univ Bonn, EIS, Bonn, Germany
[2] Fraunhofer Inst Intelligent Anal & Informat Syst, St Augustin, Germany
[3] L3S Res Ctr, Hannover, Germany
[4] TIB Leibniz Informat Ctr Sci & Technol, Hannover, Germany
[5] Schaeffler Technol, Herzogenaurach, Germany
来源
DATABASE AND EXPERT SYSTEMS APPLICATIONS, DEXA 2018, PT I | 2018年 / 11029卷
关键词
D O I
10.1007/978-3-319-98809-2_12
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Cyber-Physical Systems (CPSs) are engineered systems that result from the integration of both physical and computational components designed from different engineering perspectives (e.g., mechanical, electrical, and software). Standards related to Smart Manufacturing (e.g., AutomationML) are used to describe CPS components, as well as to facilitate their integration. Albeit expressive, smart manufacturing standards allow for the representation of the same features in various ways, thus hampering a fully integrated description of a CPS component. We tackle this integration problem of CPS components and propose an approach that captures the knowledge encoded in smart manufacturing standards to effectively describe CPSs. We devise SEMCPS, a framework able to combine Probabilistic Soft Logic and Knowledge Graphs to semantically describe both a CPS and its components. We have empirically evaluated SEMCPS on a benchmark of AutomationML documents describing CPS components from various perspectives. Results suggest that SEM-CPS enables not only the semantic integration of the descriptions of CPS components, but also allows for preserving the individual characterization of these components.
引用
收藏
页码:184 / 199
页数:16
相关论文
共 32 条
[1]  
[Anonymous], 2014, P 8 ACMIEEE INT S EM
[2]  
[Anonymous], 2012, EM TECHN FACT AUT ET
[3]  
[Anonymous], INT WS CYBER PHYS PR
[4]  
Bach S., 2017, Journal of Machine Learning Research (JMLR), V18, P1
[5]  
Bauernhansl T, 2014, IND 4 0 PRODUKTION A, DOI [10.1007/978-3-658-04682-8, DOI 10.1007/978-3-658-04682-8]
[6]  
Broecheler M., 2010, PROCEED INGS 26 C UN, P73
[7]  
Chekol MW, 2017, AAAI CONF ARTIF INTE, P88
[8]  
Chen K., 2009, Collaborative Design and Planning for Digital Manufacturing, P37, DOI DOI 10.1007/978-1-84882-287-0_2
[9]  
Drath R., 2009, Datenaustausch in der Anlagenplanung mit Automa- tionML: Integration von CAEX, PLCopen XML und COLLADA
[10]  
Estevez E., 2010, P 15 IEEE INT C EM T, P1, DOI https://doi.org/10.1109/ETFA.2010.5641359