On normal pointsystems of Hermite-Fejer interpolation of arbitrary order

被引:0
作者
Shi, YG
机构
[1] Hunan Normal Univ, Dept Math, Changsha, Hunan, Peoples R China
[2] Chinese Acad Sci, Acad Math & Syst Sci, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1006/jath.2001.3590
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Necessary conditions of normal pointsystems for Hermite Fejer interpolation of arbitrary (even) order are given. In particular, one of the main results in this paper is: If a pointsystem consists of the zeros of orthogonal polynomials with respect to a weight w on [-1, 1] and is always normal for Hermite-Fejer interpolation of arbitrary (even) order, then w(x) similar to ( 1- x(2))(-1/2). (C) 2001 Academic Press.
引用
收藏
页码:44 / 60
页数:17
相关论文
共 8 条
[1]   On interpolation. III. Interpolatory theory of polynomials [J].
Erdos, P ;
Turan, P .
ANNALS OF MATHEMATICS, 1940, 41 :510-553
[2]   On the uniform distribution of the roots of certain polynomials [J].
Erdos, P .
ANNALS OF MATHEMATICS, 1942, 43 :59-64
[3]   On interpolation II On the distribution of the fundamental points of Lagrange and Hermite interpolation [J].
Erdos, P ;
Turan, P .
ANNALS OF MATHEMATICS, 1938, 39 :703-724
[4]   STRONG AND WEAK-CONVERGENCE OF ORTHOGONAL POLYNOMIALS [J].
MATE, A ;
NEVAI, P ;
TOTIK, V .
AMERICAN JOURNAL OF MATHEMATICS, 1987, 109 (02) :239-281
[5]  
NEVAI PG, 1979, MEM AM MATH SOC, V18, P1
[6]   BOUNDS AND INEQUALITIES FOR GENERAL ORTHOGONAL POLYNOMIALS ON FINITE INTERVALS [J].
SHI, YG .
JOURNAL OF APPROXIMATION THEORY, 1993, 73 (03) :303-333
[7]   On hermite interpolation [J].
Shi, YG .
JOURNAL OF APPROXIMATION THEORY, 2000, 105 (01) :49-86
[8]   ON THE ORDER OF MAGNITUDE OF FUNDAMENTAL POLYNOMIALS OF HERMITE INTERPOLATION [J].
SZABADOS, J .
ACTA MATHEMATICA HUNGARICA, 1993, 61 (3-4) :357-368