One-step solid state preparation of reduced graphene oxide

被引:170
作者
Shen, Jianfeng [1 ]
Li, Tie [1 ]
Long, Yu [1 ]
Shi, Min [1 ]
Li, Na [1 ]
Ye, Mingxin [1 ]
机构
[1] Fudan Univ, Ctr Special Mat & Technol, Shanghai 200433, Peoples R China
关键词
EXFOLIATED GRAPHITE OXIDE; PHOTOCATALYTIC REDUCTION; ELECTRONIC-STRUCTURE; AQUEOUS DISPERSIONS; SHEETS; NANOPARTICLES; NANOSHEETS; COMPOSITE; NANOPLATELETS; ROUTE;
D O I
10.1016/j.carbon.2012.01.019
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We have developed an easy and scalable chemical reduction method assisted by microwave irradiation for the synthesis of reduced graphene oxide (RGO) nanosheets in solid state. The as-synthesized RGO is characterized by Fourier transform infrared spectroscopy, Raman spectroscopy, thermogravimetry, X-ray diffraction, X-ray photoelectron spectroscopy and atomic force microscopy. It is revealed that the bulk of the oxygen-containing functional groups are removed from graphene oxide with this one-step reduction method and monolayer RGO sheets are got from its N,N-dimethyl formamide solution. It is found that the ammonium bicarbonate plays a key role in the preparation of RGO. Considering the analysis results, a mechanism for the formation of RGO is proposed. Besides being eco-friendly, when compared to previous chemical techniques, this process has several advantages like low cost, simplicity and short processing times, which may find practical applications in the preparation of graphene-based composites. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2134 / 2140
页数:7
相关论文
共 46 条
[1]   Photocatalytic reduction of graphene oxides hybridized by ZnO nanoparticles in ethanol [J].
Akhavan, O. .
CARBON, 2011, 49 (01) :11-18
[2]   Photodegradation of Graphene Oxide Sheets by TiO2 Nanoparticles after a Photocatalytic Reduction [J].
Akhavan, O. ;
Abdolahad, M. ;
Esfandiar, A. ;
Mohatashamifar, M. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (30) :12955-12959
[3]   Photocatalytic Reduction of Graphene Oxide Nanosheets on TiO2 Thin Film for Photoinactivation of Bacteria in Solar Light Irradiation [J].
Akhavan, O. ;
Ghaderi, E. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (47) :20214-20220
[4]   A Transparent, Flexible, Low-Temperature, and Solution-Processible Graphene Composite Electrode [J].
Chang, Haixin ;
Wang, Guangfeng ;
Yang, An ;
Tao, Xiaoming ;
Liu, Xuqing ;
Shen, Youde ;
Zheng, Zijian .
ADVANCED FUNCTIONAL MATERIALS, 2010, 20 (17) :2893-2902
[5]   Substrate-free gas-phase synthesis of graphene sheets [J].
Dato, Albert ;
Radmilovic, Velimir ;
Lee, Zonghoon ;
Phillips, Jonathan ;
Frenklach, Michael .
NANO LETTERS, 2008, 8 (07) :2012-2016
[6]   Deoxygenation of Exfoliated Graphite Oxide under Alkaline Conditions: A Green Route to Graphene Preparation [J].
Fan, Xiaobin ;
Peng, Wenchao ;
Li, Yang ;
Li, Xianyu ;
Wang, Shulan ;
Zhang, Guoliang ;
Zhang, Fengbao .
ADVANCED MATERIALS, 2008, 20 (23) :4490-4493
[7]   An environmentally friendly and efficient route for the reduction of graphene oxide by aluminum powder [J].
Fan, Zhuangjun ;
Wang, Kai ;
Wei, Tong ;
Yan, Jun ;
Song, Liping ;
Shao, Bo .
CARBON, 2010, 48 (05) :1686-1689
[8]   Vitamin C Is an Ideal Substitute for Hydrazine in the Reduction of Graphene Oxide Suspensions [J].
Fernandez-Merino, M. J. ;
Guardia, L. ;
Paredes, J. I. ;
Villar-Rodil, S. ;
Solis-Fernandez, P. ;
Martinez-Alonso, A. ;
Tascon, J. M. D. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (14) :6426-6432
[9]   Heteroepitaxial graphite on 6H-SiC(0001):: Interface formation through conduction-band electronic structure [J].
Forbeaux, I ;
Themlin, JM ;
Debever, JM .
PHYSICAL REVIEW B, 1998, 58 (24) :16396-16406
[10]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191