Fuzzy fractional differential equations with the generalized Atangana-Baleanu fractional derivative

被引:8
|
作者
Vu, Ho [1 ,2 ]
Ghanbari, Behzad [3 ,4 ]
Ngo Van Hoa [5 ,6 ]
机构
[1] Duy Tan Univ, Inst Res & Dev, Danang 550000, Vietnam
[2] Duy Tan Univ, Fac Nat Sci, Danang 550000, Vietnam
[3] Kermanshah Univ Technol, Dept Engn Sci, Kermanshah, Iran
[4] Bahcesehir Univ, Fac Engn & Nat Sci, Dept Math, TR-34349 Istanbul, Turkey
[5] Ton Duc Thang Univ, Inst Computat Sci, Div Computat Math & Engn, Ho Chi Minh City, Vietnam
[6] Ton Duc Thang Univ, Fac Math & Stat, Ho Chi Minh City, Vietnam
关键词
Fuzzy fractional differential equations; The generalized Mittag-Leffler kernel; Fractional Atangana-Baleanu derivative; VALUED FUNCTIONS; CALCULUS;
D O I
10.1016/j.fss.2020.11.017
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we introduce a generalization of Atangana-Baleanu type fractional calculus with respect to the generalized Mittag-Leffler kernel which has been named as the generalized Atangana-Baleanu (GAB) type fractional calculus. Existence and uniqueness results for the initial value problems of fuzzy differential equations involving a GAB fractional derivative in the Caputo sense are established by employing the method of successive approximation and by means of fixed point theorems. To visualize the theoretical results, some examples and numerical simulations are given. (c) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 27
页数:27
相关论文
共 50 条
  • [41] Random solutions to a system of fractional differential equations via the Hadamard fractional derivative
    Seghier, Mostefa
    Ouahab, Abdelghani
    Henderson, Johnny
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2017, 226 (16-18) : 3525 - 3549
  • [42] Neutral fuzzy fractional functional differential equations
    Phu, Nguyen Dinh
    Lupulescu, Vasile
    Hoa, Ngo Van
    Hoa, Ngo Van (ngovanhoa@tdtu.edu.vn), 1600, Elsevier B.V. (419): : 1 - 34
  • [43] Vibrational analysis of viscous thin beams stressed by laser mechanical load using a heat transfer model with a fractional Atangana-Baleanu operator
    Abouelregal, Ahmed E.
    Alesemi, Meshari
    CASE STUDIES IN THERMAL ENGINEERING, 2022, 34
  • [44] Neutral fuzzy fractional functional differential equations
    Phu, Nguyen Dinh
    Lupulescu, Vasile
    Hoa, Ngo Van
    FUZZY SETS AND SYSTEMS, 2021, 419 : 1 - 34
  • [45] Predictor–corrector approach for the numerical solution of fuzzy fractional differential equations and linear multiterm fuzzy fractional equations
    Wadhah Al-Sadi
    Zhouchao Wei
    Irene Moroz
    Omar Abu Arqub
    Tariq Q. S. Abdullah
    Soft Computing, 2025, 29 (3) : 1347 - 1368
  • [46] Spectral Collocation Method for Fractional Differential/Integral Equations with Generalized Fractional Operator
    Xu, Qinwu
    Zheng, Zhoushun
    INTERNATIONAL JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 2019
  • [47] Manifestation of interval uncertainties for fractional differential equations under conformable derivative
    Rahaman, Mostafijur
    Mondal, Sankar Prasad
    Alam, Shariful
    Metwally, Ahmed Sayed M.
    Salahshour, Soheil
    Salimi, Mehdi
    Ahmadian, Ali
    CHAOS SOLITONS & FRACTALS, 2022, 165
  • [48] A survey on non-instantaneous impulsive fuzzy differential equations involving the generalized Caputo fractional derivative in the short memory case
    Truong Vinh An
    Nguyen Dinh Phu
    Ngo Van Hoa
    FUZZY SETS AND SYSTEMS, 2022, 443 : 160 - 197
  • [49] Solution of fuzzy fractional order differential equations by fractional Mellin transform method
    Azhar, Noreen
    Iqbal, Saleem
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 400
  • [50] Asymptotic solutions of fractional interval differential equations with nonsingular kernel derivative
    Salahshour, S.
    Ahmadian, A.
    Salimi, M.
    Ferrara, M.
    Baleanu, D.
    CHAOS, 2019, 29 (08)