Fuzzy fractional differential equations with the generalized Atangana-Baleanu fractional derivative

被引:8
|
作者
Vu, Ho [1 ,2 ]
Ghanbari, Behzad [3 ,4 ]
Ngo Van Hoa [5 ,6 ]
机构
[1] Duy Tan Univ, Inst Res & Dev, Danang 550000, Vietnam
[2] Duy Tan Univ, Fac Nat Sci, Danang 550000, Vietnam
[3] Kermanshah Univ Technol, Dept Engn Sci, Kermanshah, Iran
[4] Bahcesehir Univ, Fac Engn & Nat Sci, Dept Math, TR-34349 Istanbul, Turkey
[5] Ton Duc Thang Univ, Inst Computat Sci, Div Computat Math & Engn, Ho Chi Minh City, Vietnam
[6] Ton Duc Thang Univ, Fac Math & Stat, Ho Chi Minh City, Vietnam
关键词
Fuzzy fractional differential equations; The generalized Mittag-Leffler kernel; Fractional Atangana-Baleanu derivative; VALUED FUNCTIONS; CALCULUS;
D O I
10.1016/j.fss.2020.11.017
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we introduce a generalization of Atangana-Baleanu type fractional calculus with respect to the generalized Mittag-Leffler kernel which has been named as the generalized Atangana-Baleanu (GAB) type fractional calculus. Existence and uniqueness results for the initial value problems of fuzzy differential equations involving a GAB fractional derivative in the Caputo sense are established by employing the method of successive approximation and by means of fixed point theorems. To visualize the theoretical results, some examples and numerical simulations are given. (c) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 27
页数:27
相关论文
共 50 条
  • [42] Study on generalized fuzzy fractional human liver model with Atangana–Baleanu–Caputo fractional derivative
    Lalchand Verma
    Ramakanta Meher
    The European Physical Journal Plus, 137
  • [43] Controllability of semilinear noninstantaneous impulsive neutral stochastic differential equations via Atangana-Baleanu Caputo fractional derivative
    Sarwar, Muhammad
    Hussain, Sadam
    Abodayeh, Kamaleldin
    Moonsuwan, Sawitree
    Sitthiwirattham, Thanin
    ALEXANDRIA ENGINEERING JOURNAL, 2024, 94 : 149 - 158
  • [44] On Atangana-Baleanu fuzzy-fractional optimal control problems
    Younus, Awais
    Ghaffar, Iram
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2022, 43 (04) : 4061 - 4070
  • [45] Existence results of a nonlocal impulsive fractional stochastic differential systems with Atangana-Baleanu derivative
    Dhayal, Rajesh
    Nadeem, Mohd
    JOURNAL OF ANALYSIS, 2024,
  • [46] An epidemiological approach to insurgent population modeling with the Atangana-Baleanu fractional derivative
    Kolebaje, Olusola
    Popoola, Oyebola
    Khan, Muhammad Altaf
    Oyewande, Oluwole
    CHAOS SOLITONS & FRACTALS, 2020, 139
  • [47] Analysis of the non-linear higher dimensional fractional differential equations arising in dusty plasma using the Atangana-Baleanu fractional derivative
    Nazneen, Attiya
    Nawaz, Rashid
    Zada, Laiq
    Ali, Nasir
    Benghanem, Mohamed
    Ahmad, Hijaz
    RESULTS IN ENGINEERING, 2025, 25
  • [48] Fractional nonlinear Volterra-Fredholm integral equations involving Atangana-Baleanu fractional derivative: framelet applications
    Mohammad, Mutaz
    Trounev, Alexander
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [49] Fractional model of Ebola virus in population of bats in frame of Atangana-Baleanu fractional derivative
    Almuqrin, M. A.
    Goswami, P.
    Sharma, S.
    Khan, I.
    Dubey, R. S.
    Khan, A.
    RESULTS IN PHYSICS, 2021, 26
  • [50] Stability analysis for a class of implicit fractional differential equations involving Atangana–Baleanu fractional derivative
    Sana Asma
    Kamal Shabbir
    Thabet Shah
    Advances in Difference Equations, 2021