Fuzzy fractional differential equations with the generalized Atangana-Baleanu fractional derivative

被引:8
|
作者
Vu, Ho [1 ,2 ]
Ghanbari, Behzad [3 ,4 ]
Ngo Van Hoa [5 ,6 ]
机构
[1] Duy Tan Univ, Inst Res & Dev, Danang 550000, Vietnam
[2] Duy Tan Univ, Fac Nat Sci, Danang 550000, Vietnam
[3] Kermanshah Univ Technol, Dept Engn Sci, Kermanshah, Iran
[4] Bahcesehir Univ, Fac Engn & Nat Sci, Dept Math, TR-34349 Istanbul, Turkey
[5] Ton Duc Thang Univ, Inst Computat Sci, Div Computat Math & Engn, Ho Chi Minh City, Vietnam
[6] Ton Duc Thang Univ, Fac Math & Stat, Ho Chi Minh City, Vietnam
关键词
Fuzzy fractional differential equations; The generalized Mittag-Leffler kernel; Fractional Atangana-Baleanu derivative; VALUED FUNCTIONS; CALCULUS;
D O I
10.1016/j.fss.2020.11.017
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we introduce a generalization of Atangana-Baleanu type fractional calculus with respect to the generalized Mittag-Leffler kernel which has been named as the generalized Atangana-Baleanu (GAB) type fractional calculus. Existence and uniqueness results for the initial value problems of fuzzy differential equations involving a GAB fractional derivative in the Caputo sense are established by employing the method of successive approximation and by means of fixed point theorems. To visualize the theoretical results, some examples and numerical simulations are given. (c) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 27
页数:27
相关论文
共 50 条
  • [31] Spline collocation methods for systems of fuzzy fractional differential equations
    Alijani, Zahra
    Baleanu, Dumitru
    Shiri, Babak
    Wu, Guo-Cheng
    CHAOS SOLITONS & FRACTALS, 2020, 131
  • [32] Glucose-insulin regulatory system: Chaos control and stability analysis via Atangana-Baleanu fractal-fractional derivatives
    Alhazmi, Muflih
    Saber, Sayed
    ALEXANDRIA ENGINEERING JOURNAL, 2025, 122 : 77 - 90
  • [33] Finite-time stability analysis of fractional fuzzy differential equations with time-varying delay involving the generalized Caputo fractional derivative
    Phut, Lai Van
    AFRIKA MATEMATIKA, 2024, 35 (03)
  • [34] Solving fuzzy fractional differential equations by fuzzy Laplace transforms
    Salahshour, S.
    Allahviranloo, T.
    Abbasbandy, S.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (03) : 1372 - 1381
  • [35] Natural convection flow of a fluid using Atangana and Baleanu fractional model
    Aman, Sidra
    Abdeljawad, Thabet
    Al-Mdallal, Qasem
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [36] A Fuzzy Method for Solving Fuzzy Fractional Differential Equations Based on the Generalized Fuzzy Taylor Expansion
    Allahviranloo, Tofigh
    Noeiaghdam, Zahra
    Noeiaghdam, Samad
    Nieto, Juan J.
    MATHEMATICS, 2020, 8 (12) : 1 - 24
  • [37] A survey on fuzzy fractional differential and optimal control nonlocal evolution equations
    Agarwal, Ravi P.
    Baleanu, Dumitru
    Nieto, Juan J.
    Torres, Delfim F. M.
    Zhou, Yong
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 339 : 3 - 29
  • [38] Fractional Differential Equations Associated with Generalized Fractional Operators in Fp,ν Space
    Bansal, Manish Kumar
    Harjule, Priyanka
    Kumar, Devendra
    THAI JOURNAL OF MATHEMATICS, 2022, 20 (04): : 1669 - 1677
  • [39] Design of Atangana-Baleanu-Caputo fractional-order digital filter
    Gupta, Anmol
    Kumar, Sanjay
    ISA TRANSACTIONS, 2021, 112 : 74 - 88
  • [40] Can we split fractional derivative while analyzing fractional differential equations?
    Bhalekar, Sachin
    Patil, Madhuri
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2019, 76 : 12 - 24