Fuzzy fractional differential equations with the generalized Atangana-Baleanu fractional derivative

被引:8
|
作者
Vu, Ho [1 ,2 ]
Ghanbari, Behzad [3 ,4 ]
Ngo Van Hoa [5 ,6 ]
机构
[1] Duy Tan Univ, Inst Res & Dev, Danang 550000, Vietnam
[2] Duy Tan Univ, Fac Nat Sci, Danang 550000, Vietnam
[3] Kermanshah Univ Technol, Dept Engn Sci, Kermanshah, Iran
[4] Bahcesehir Univ, Fac Engn & Nat Sci, Dept Math, TR-34349 Istanbul, Turkey
[5] Ton Duc Thang Univ, Inst Computat Sci, Div Computat Math & Engn, Ho Chi Minh City, Vietnam
[6] Ton Duc Thang Univ, Fac Math & Stat, Ho Chi Minh City, Vietnam
关键词
Fuzzy fractional differential equations; The generalized Mittag-Leffler kernel; Fractional Atangana-Baleanu derivative; VALUED FUNCTIONS; CALCULUS;
D O I
10.1016/j.fss.2020.11.017
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we introduce a generalization of Atangana-Baleanu type fractional calculus with respect to the generalized Mittag-Leffler kernel which has been named as the generalized Atangana-Baleanu (GAB) type fractional calculus. Existence and uniqueness results for the initial value problems of fuzzy differential equations involving a GAB fractional derivative in the Caputo sense are established by employing the method of successive approximation and by means of fixed point theorems. To visualize the theoretical results, some examples and numerical simulations are given. (c) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 27
页数:27
相关论文
共 50 条
  • [21] Controllability of semilinear impulsive Atangana-Baleanu fractional differential equations with delay
    Aimene, D.
    Baleanu, D.
    Seba, D.
    CHAOS SOLITONS & FRACTALS, 2019, 128 : 51 - 57
  • [22] Inverse problem for the Atangana-Baleanu fractional differential equation
    Ruhil, Santosh
    Malik, Muslim
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2023, 31 (05): : 763 - 779
  • [23] A fractional dynamics of tuberculosis (TB) model in the frame of generalized Atangana-Baleanu derivative
    Shatanawi, Wasfi
    Abdo, Mohammed S.
    Abdulwasaa, Mansour A.
    Shah, Kamal
    Panchal, Satish K.
    Kawale, Sunil, V
    Ghadle, Kirtiwant P.
    RESULTS IN PHYSICS, 2021, 29
  • [24] Comparative Analysis of Advection-Dispersion Equations with Atangana-Baleanu Fractional Derivative
    Alshehry, Azzh Saad
    Yasmin, Humaira
    Ghani, Fazal
    Shah, Rasool
    Nonlaopon, Kamsing
    SYMMETRY-BASEL, 2023, 15 (04):
  • [25] Fuzzy fractional Gardner and Cahn-Hilliard equations with the Atangana-Baleanu operator
    Shah, Manzoor Ali
    Yasmin, Humaira
    Ghani, Fazal
    Abdullah, Saleem
    Khan, Imran
    Shah, Rasool
    FRONTIERS IN PHYSICS, 2023, 11
  • [26] Nonlocal impulsive differential equations and inclusions involving Atangana-Baleanu fractional derivative in infinite dimensional spaces
    Al Nuwairan, Muneerah
    Ibrahim, Ahmed Gamal
    AIMS MATHEMATICS, 2023, 8 (05): : 11752 - 11780
  • [27] Optimally analyzed fractional Coronavirus model with Atangana-Baleanu derivative
    Butt, A. I. K.
    Ahmad, W.
    Rafiq, M.
    Ahmad, N.
    Imran, M.
    RESULTS IN PHYSICS, 2023, 53
  • [28] Comparison of Caputo and Atangana-Baleanu fractional derivatives for the pseudohyperbolic telegraph differential equations
    Modanli, Mahmut
    PRAMANA-JOURNAL OF PHYSICS, 2021, 96 (01):
  • [29] A creep constitutive model based on Atangana-Baleanu fractional derivative
    Deng, Huilin
    Zhou, Hongwei
    Wei, Qing
    Li, Lifeng
    Jia, Wenhao
    MECHANICS OF TIME-DEPENDENT MATERIALS, 2023, 27 (04) : 1171 - 1186
  • [30] A new exploration on existence of fractional neutral integro-differential equations in the concept of Atangana-Baleanu derivative
    Logeswari, K.
    Ravichandran, C.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2020, 544