Fuzzy fractional differential equations with the generalized Atangana-Baleanu fractional derivative

被引:8
|
作者
Vu, Ho [1 ,2 ]
Ghanbari, Behzad [3 ,4 ]
Ngo Van Hoa [5 ,6 ]
机构
[1] Duy Tan Univ, Inst Res & Dev, Danang 550000, Vietnam
[2] Duy Tan Univ, Fac Nat Sci, Danang 550000, Vietnam
[3] Kermanshah Univ Technol, Dept Engn Sci, Kermanshah, Iran
[4] Bahcesehir Univ, Fac Engn & Nat Sci, Dept Math, TR-34349 Istanbul, Turkey
[5] Ton Duc Thang Univ, Inst Computat Sci, Div Computat Math & Engn, Ho Chi Minh City, Vietnam
[6] Ton Duc Thang Univ, Fac Math & Stat, Ho Chi Minh City, Vietnam
关键词
Fuzzy fractional differential equations; The generalized Mittag-Leffler kernel; Fractional Atangana-Baleanu derivative; VALUED FUNCTIONS; CALCULUS;
D O I
10.1016/j.fss.2020.11.017
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we introduce a generalization of Atangana-Baleanu type fractional calculus with respect to the generalized Mittag-Leffler kernel which has been named as the generalized Atangana-Baleanu (GAB) type fractional calculus. Existence and uniqueness results for the initial value problems of fuzzy differential equations involving a GAB fractional derivative in the Caputo sense are established by employing the method of successive approximation and by means of fixed point theorems. To visualize the theoretical results, some examples and numerical simulations are given. (c) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 27
页数:27
相关论文
共 50 条
  • [1] EXISTENCE AND UNIQUENESS RESULTS FOR FUZZY BOUNDARY VALUE PROBLEMS OF NONLINEAR DIFFERENTIAL EQUATIONS INVOLVING ATANGANA-BALEANU FRACTIONAL DERIVATIVES
    Zamtain, F.
    Elomari, M.
    Melliani, S.
    EL Mfadel, A.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2024, 14 (02): : 579 - 596
  • [2] Qualitative analysis of a fuzzy Volterra-Fredholm integrodifferential equation with an Atangana-Baleanu fractional derivative
    Almalahi, Mohammed A.
    Panchal, Satish K.
    Jarad, Fahd
    Abdo, Mohammed S.
    Shah, Kamal
    Abdeljawad, Thabet
    AIMS MATHEMATICS, 2022, 7 (09): : 15994 - 16016
  • [3] Analysis of Keller-Segel Model with Atangana-Baleanu Fractional Derivative
    Dokuyucu, Mustafa Ali
    Baleanu, Dumitru
    Celik, Ercan
    FILOMAT, 2018, 32 (16) : 5633 - 5643
  • [4] Modeling and analysis of an epidemic model with fractal-fractional Atangana-Baleanu derivative
    El-Dessoky, M. M.
    Khan, Muhammad Altaf
    ALEXANDRIA ENGINEERING JOURNAL, 2022, 61 (01) : 729 - 746
  • [5] Analysis and numerical simulation of fractional model of bank data with fractal-fractional Atangana-Baleanu derivative
    Wang, Wanting
    Khan, Muhammad Altaf
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 369
  • [6] A novel convolutional Atangana-Baleanu fractional derivative mask for medical image edge analysis
    Appati, Justice Kwame
    Owusu, Ebenezer
    Soli, Michael Agbo Tettey
    Adu-Manu, Kofi Sarpong
    JOURNAL OF EXPERIMENTAL & THEORETICAL ARTIFICIAL INTELLIGENCE, 2024, 36 (05) : 815 - 837
  • [7] Fuzzy fractional differential equations under generalized fuzzy Caputo derivative
    Allahviranloo, T.
    Armand, A.
    Gouyandeh, Z.
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2014, 26 (03) : 1481 - 1490
  • [8] On Atangana-Baleanu fractional granular calculus and its applications to fuzzy economic models in market equilibrium
    Liu, Xuelong
    Ye, Guoju
    Liu, Wei
    Guo, Yating
    Shi, Fangfang
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 450
  • [9] Numerical analysis of fractional coronavirus model with Atangana-Baleanu derivative in Liouville-Caputo sense
    Goyal, M.
    Saraswat, A. K.
    Prakash, A.
    INDIAN JOURNAL OF PHYSICS, 2023, 97 (01) : 147 - 164
  • [10] Numerical Solution of Fractional-Order Fredholm Integrodifferential Equation in the Sense of Atangana-Baleanu Derivative
    Wang, Jian
    Kamran
    Jamal, Ayesha
    Li, Xuemei
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021