LONG TIME DYNAMICS FOR DAMPED KLEIN-GORDON EQUATIONS

被引:14
作者
Burq, Nicolas [1 ]
Raugel, Genevieve [2 ,3 ]
Schlag, Wilhelm [4 ]
机构
[1] Univ Paris Sud, Lab Math Orsay, Batiment 425, F-91405 Orsay, France
[2] Univ Paris Sud, Batiment 425, F-91405 Orsay, France
[3] CNRS, Lab Math Orsay, Batiment 425, F-91405 Orsay, France
[4] Univ Chicago, Dept Math, 5734 South Univ Ave, Chicago, IL 60636 USA
来源
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE | 2017年 / 50卷 / 06期
关键词
INVARIANT FOLIATIONS; STATE SOLUTIONS; CONVERGENCE; UNIQUENESS; EXISTENCE; WAVES;
D O I
10.24033/asens.2349
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For general nonlinear Klein-Gordon equations with dissipation we show that any finite energy radial solution either blows up in finite time or asymptotically approaches a stationary solution in H-1 x L-2. In particular, any global in positive times solution is bounded in positive times. The result applies to standard energy subcritical focusing nonlinearities broken vertical bar u broken vertical bar(p-1)u,1< p < (d + 2)/(d - 2) as well as to any energy subcritical nonlinearity obeying a sign condition of the Ambrosetti-Rabinowitz type. The argument involves both techniques from nonlinear dispersive PDEs and dynamical systems (invariant manifold theory in Banach spaces and convergence theorems).
引用
收藏
页码:1447 / 1498
页数:52
相关论文
共 35 条
[1]  
[Anonymous], 1994, DYNAM SYST APPL
[2]  
[Anonymous], 1996, LECT MATH ETH ZURICH
[3]  
[Anonymous], PREPRINT
[4]  
[Anonymous], 1977, LECT NOTES MATH
[5]  
[Anonymous], GRUNDL MATH WISS
[6]  
AULBACH B, 1984, LECT NOTES MATH, V1058, pU1
[7]  
Bates PW., 1989, DYNAMICS REPORTED, P1, DOI DOI 10.1007/978-3-322-96657-5_
[8]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
[9]  
Brunovsky P, 1997, Z ANGEW MATH PHYS, V48, P976
[10]   SMOOTH CONJUGACY OF CENTER MANIFOLDS [J].
BURCHARD, A ;
DENG, B ;
LU, KN .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1992, 120 :61-77