Stochastic analysis based on deterministic Brownian motion

被引:4
作者
Kamae, T [1 ]
机构
[1] Osaka City Univ, Dept Math, Osaka 5588585, Japan
关键词
BROWNIAN Motion; Sample Path; Stochastic Analysis; Deterministic Version; Countable Dense Subset;
D O I
10.1007/BF02773385
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A deterministic version of the Ito calculus is presented. We consider a model Y-t = H (N-t, t) with a deterministic Brownian N-t and an unknown function H. We predict Y-c from the observation {Y-t;t is an element of [a,b]}, where a < b < c. We prove that there exists an estimator Yt based on the observation such that E[((Y) over cap (t) - Y-c)(2)] = O((c - b)(2)) as c down arrow b.
引用
收藏
页码:317 / 346
页数:30
相关论文
共 2 条
[1]   Linear expansions, strictly ergodic homogeneous cocycles and fractals [J].
Kamae, T .
ISRAEL JOURNAL OF MATHEMATICS, 1998, 106 (1) :313-337
[2]  
MANDELBROT BB, 1999, MULTIFRACTAL WALK WA