Scaling of graphene integrated circuits

被引:25
作者
Bianchi, Massimiliano [1 ]
Guerriero, Erica [1 ]
Fiocco, Marco [1 ]
Alberti, Ruggero [1 ]
Polloni, Laura [1 ]
Behnam, Ashkan [2 ]
Carrion, Enrique A. [2 ]
Pop, Eric [3 ]
Sordan, Roman [1 ]
机构
[1] Politecn Milan, Dept Phys, L NESS, Polo Como, I-22100 Como, Italy
[2] Univ Illinois, Elect & Comp Engn, Urbana, IL 61801 USA
[3] Stanford Univ, Elect Engn, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
CONTACT-RESISTANCE; FREQUENCY; ELECTRONICS; DEVICES;
D O I
10.1039/c5nr01126d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The influence of transistor size reduction (scaling) on the speed of realistic multi-stage integrated circuits (ICs) represents the main performance metric of a given transistor technology. Despite extensive interest in graphene electronics, scaling efforts have so far focused on individual transistors rather than multi-stage ICs. Here we study the scaling of graphene ICs based on transistors from 3.3 to 0.5 mu m gate lengths and with different channel widths, access lengths, and lead thicknesses. The shortest gate delay of 31 ps per stage was obtained in sub-micron graphene ROs oscillating at 4.3 GHz, which is the highest oscillation frequency obtained in any strictly low-dimensional material to date. We also derived the fundamental Johnson limit, showing that scaled graphene ICs could be used at high frequencies in applications with small voltage swing.
引用
收藏
页码:8076 / 8083
页数:8
相关论文
共 47 条
[1]  
[Anonymous], 2011, INT TECHNOLOGY ROADM
[2]  
[Anonymous], IEDM
[3]  
Auth C., 2012, 2012 IEEE Symposium on VLSI Technology, P131, DOI 10.1109/VLSIT.2012.6242496
[4]   High-speed, short-channel polycrystalline silicon thin-film transistors [J].
Brotherton, SD ;
Glasse, C ;
Glaister, C ;
Green, P ;
Rohlfing, F ;
Ayres, JR .
APPLIED PHYSICS LETTERS, 2004, 84 (02) :293-295
[5]   Benchmarking nanotechnology for high-performance and low-power logic transistor applications [J].
Chau, R ;
Datta, S ;
Doczy, M ;
Doyle, B ;
Jin, J ;
Kavalieros, J ;
Majumdar, A ;
Metz, M ;
Radosavljevic, M .
IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2005, 4 (02) :153-158
[6]   Charged-impurity scattering in graphene [J].
Chen, J. -H. ;
Jang, C. ;
Adam, S. ;
Fuhrer, M. S. ;
Williams, E. D. ;
Ishigami, M. .
NATURE PHYSICS, 2008, 4 (05) :377-381
[7]  
Chen M.-C., 2013, S VLSI TECHN, pT218
[8]   An integrated logic circuit assembled on a single carbon nanotube [J].
Chen, ZH ;
Appenzeller, J ;
Lin, YM ;
Sippel-Oakley, J ;
Rinzler, AG ;
Tang, JY ;
Wind, SJ ;
Solomon, PM ;
Avouris, P .
SCIENCE, 2006, 311 (5768) :1735-1735
[9]  
Colinge J.-P., 2004, SILICON ON INSULATOR, V3rd
[10]   Boron nitride substrates for high-quality graphene electronics [J].
Dean, C. R. ;
Young, A. F. ;
Meric, I. ;
Lee, C. ;
Wang, L. ;
Sorgenfrei, S. ;
Watanabe, K. ;
Taniguchi, T. ;
Kim, P. ;
Shepard, K. L. ;
Hone, J. .
NATURE NANOTECHNOLOGY, 2010, 5 (10) :722-726