Dynamics of fractional-order neural networks

被引:0
作者
Kaslik, Eva [1 ]
Sivasundaram, Seenith [2 ]
机构
[1] W Univ Timisoara, Dept Math & Comp Sci, Timisoara, Romania
[2] Embry Riddle Aeronaut Univ, Daytona Beach, FL 32114 USA
来源
2011 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN) | 2011年
关键词
NONLINEAR-WAVES; DELAYS; RING; NEURONS; STABILITY; MODEL; BIFURCATION; PATTERNS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we discuss the stability analysis for fractional-order neural networks of Hopfield type. The stability domain of a steady state is completely characterized with respect to some characteristic parameters of the system, in the case of a two-dimensional network and of a network of n >= 3 neurons with ring structure. The values of the characteristic parameters for which Hopf bifurcations occur are identified. Numerical simulations are given which substantiate the theoretical findings and suggest possible routes towards chaos when the fractional order of the system increases.
引用
收藏
页码:611 / 618
页数:8
相关论文
共 35 条
[1]  
AHMAD B, 2010, HYBRID SYSTEMS, V4, P134
[2]  
Ahmad B., 2008, Communications in Applied Analysis, V12, P107
[3]   THE FRACTIONAL-ORDER DYNAMICS OF BRAIN-STEM VESTIBULOOCULOMOTOR NEURONS [J].
ANASTASIO, TJ .
BIOLOGICAL CYBERNETICS, 1994, 72 (01) :69-79
[4]  
[Anonymous], 2006, THEORY APPL FRACTION
[5]  
[Anonymous], ABSTR APPL AN
[6]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[7]   Chaotic behavior in noninteger-order cellular neural networks [J].
Arena, P ;
Fortuna, L ;
Porto, D .
PHYSICAL REVIEW E, 2000, 61 (01) :776-781
[8]   HOW DELAYS AFFECT NEURAL DYNAMICS AND LEARNING [J].
BALDI, P ;
ATIYA, AF .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1994, 5 (04) :612-621
[9]  
Benchohra M, 2009, ELECTRON J DIFFER EQ
[10]  
Boroomand A, 2009, LECT NOTES COMPUT SC, V5506, P883, DOI 10.1007/978-3-642-02490-0_108