Subharmonic Bifurcation for a Non-smooth Double Pendulum with Unilateral Impact

被引:3
作者
Guo, Xiu-ying [1 ,2 ]
Zhang, Gang [1 ]
Tian, Rui-lan [3 ]
机构
[1] Hebei Normal Univ, Sch Math Sci, Shijiazhuang 050024, Hebei, Peoples R China
[2] Shijiazhuang Tiedao Univ, Dept Math & Phys, Shijiazhuang 050043, Hebei, Peoples R China
[3] Shijiazhuang Tiedao Univ, Dept Engn Mech, Shijiazhuang 050043, Hebei, Peoples R China
基金
中国国家自然科学基金;
关键词
Non-smooth double pendulum; Impact periodic orbit; Energy time scale transform; Impact recovery coefficient; MELNIKOV METHOD; CHAOS; DYNAMICS; SYSTEMS;
D O I
10.1007/s44198-022-00039-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A unilateral impact double pendulum model with hinge links is constructed to detect subharmonic bifurcation for the high dimensional non-smooth system. The non-smooth and nonlinear coupled factors lead a barrier for high dimensional conventional nonlinear techniques. By introducing reversible transformation and energy time scale transformation, the system is expressed as a smooth decoupling form of energy coordinates. Thus, the concept of subharmonic Melnikov function is extended to high-dimensional nonsmooth systems, and the influence of impact recovery coefficient on the existence of subharmonic periodic orbits of double pendulum is revealed. The efficiency of the theoretical results is verified by phase portraits, time process portraits and Poincare section.
引用
收藏
页码:349 / 367
页数:19
相关论文
共 17 条
  • [11] Dynamics of a double pendulum with distributed mass
    Rafat, M. Z.
    Wheatland, M. S.
    Bedding, T. R.
    [J]. AMERICAN JOURNAL OF PHYSICS, 2009, 77 (03) : 216 - 223
  • [12] CHAOS IN A DOUBLE PENDULUM
    SHINBROT, T
    GREBOGI, C
    WISDOM, J
    YORKE, JA
    [J]. AMERICAN JOURNAL OF PHYSICS, 1992, 60 (06) : 491 - 499
  • [13] A numerical analysis of chaos in the double pendulum
    Stachowiak, T
    Okada, T
    [J]. CHAOS SOLITONS & FRACTALS, 2006, 29 (02) : 417 - 422
  • [14] Subharmonic Melnikov theory for degenerate resonance systems and its application
    Sun, M.
    Zhang, W.
    Chen, J. E.
    Yao, M. H.
    [J]. NONLINEAR DYNAMICS, 2017, 89 (02) : 1173 - 1186
  • [15] Subharmonic Melnikov method of four-dimensional non-autonomous systems and application to a rectangular thin plate
    Sun, M.
    Zhang, W.
    Chen, J. E.
    Yao, M. H.
    [J]. NONLINEAR DYNAMICS, 2015, 82 (1-2) : 643 - 662
  • [16] Chaotic threshold for a class of impulsive differential system
    Tian, RuiLan
    Zhou, YuFeng
    Zhang, BaoLing
    Yang, XinWei
    [J]. NONLINEAR DYNAMICS, 2016, 83 (04) : 2229 - 2240
  • [17] Numerical and experimental study of a double physical pendulum with magnetic interaction
    Wojna, Mateusz
    Wijata, Adam
    Wasilewski, Grzegorz
    Awrejcewicz, Jan
    [J]. JOURNAL OF SOUND AND VIBRATION, 2018, 430 : 214 - 230