Subharmonic Bifurcation for a Non-smooth Double Pendulum with Unilateral Impact

被引:3
作者
Guo, Xiu-ying [1 ,2 ]
Zhang, Gang [1 ]
Tian, Rui-lan [3 ]
机构
[1] Hebei Normal Univ, Sch Math Sci, Shijiazhuang 050024, Hebei, Peoples R China
[2] Shijiazhuang Tiedao Univ, Dept Math & Phys, Shijiazhuang 050043, Hebei, Peoples R China
[3] Shijiazhuang Tiedao Univ, Dept Engn Mech, Shijiazhuang 050043, Hebei, Peoples R China
基金
中国国家自然科学基金;
关键词
Non-smooth double pendulum; Impact periodic orbit; Energy time scale transform; Impact recovery coefficient; MELNIKOV METHOD; CHAOS; DYNAMICS; SYSTEMS;
D O I
10.1007/s44198-022-00039-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A unilateral impact double pendulum model with hinge links is constructed to detect subharmonic bifurcation for the high dimensional non-smooth system. The non-smooth and nonlinear coupled factors lead a barrier for high dimensional conventional nonlinear techniques. By introducing reversible transformation and energy time scale transformation, the system is expressed as a smooth decoupling form of energy coordinates. Thus, the concept of subharmonic Melnikov function is extended to high-dimensional nonsmooth systems, and the influence of impact recovery coefficient on the existence of subharmonic periodic orbits of double pendulum is revealed. The efficiency of the theoretical results is verified by phase portraits, time process portraits and Poincare section.
引用
收藏
页码:349 / 367
页数:19
相关论文
共 17 条
  • [1] A Melnikov method for homoclinic orbits with many pulses
    Camassa, R
    Kovacic, G
    Tin, SK
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1998, 143 (02) : 105 - 193
  • [2] Experimental control of high-dimensional chaos: The driven double pendulum
    Christini, DJ
    Collins, JJ
    Linsay, PS
    [J]. PHYSICAL REVIEW E, 1996, 54 (05): : 4824 - 4827
  • [3] Periodic Solution of a Non-Smooth Double Pendulum with Unilateral Rigid Constrain
    Guo, Xiuying
    Zhang, Gang
    Tian, Ruilan
    [J]. SYMMETRY-BASEL, 2019, 11 (07):
  • [4] Iro H., 2015, MODERN APPROACH CASS, DOI [10.1142/9655, DOI 10.1142/9655]
  • [5] Johnson KL., 1985, Contact mechanics, DOI DOI 10.1017/CBO9781139171731
  • [6] Dynamics of a non-autonomous double pendulum model forced by biharmonic excitation with soft stops
    Lampart, Marek
    Zapomel, Jaroslav
    [J]. NONLINEAR DYNAMICS, 2020, 99 (03) : 1909 - 1921
  • [7] On the periodic solutions of perturbed 4D non-resonant systems
    Llibre, Jaume
    Novaes, Douglas D.
    Teixeira, Marco Antonio
    [J]. SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES, 2015, 9 (02): : 229 - 250
  • [8] Nonlinear dynamics of a rotating double pendulum
    Maiti, Soumyabrata
    Roy, Jyotirmoy
    Mallik, Asok K.
    Bhattacharjee, Jayanta K.
    [J]. PHYSICS LETTERS A, 2016, 380 (03) : 408 - 412
  • [9] Ohlhoff A, 2000, Z ANGEW MATH MECH, V80, P517, DOI 10.1002/1521-4001(200008)80:8<517::AID-ZAMM517>3.0.CO
  • [10] 2-1