Rolling and sliding between non-spherical particles

被引:10
|
作者
Zhao, Chuang [1 ]
Li, Chengbo [2 ]
Hu, Lin [1 ]
机构
[1] Guizhou Univ, Coll Phys, Guiyang 550025, Guizhou, Peoples R China
[2] Anyang Inst Technol, Coll Math & Phys, Anyang 455000, Peoples R China
基金
中国国家自然科学基金;
关键词
Discrete element method; Non-spherical particles; Direct shears; Rolling resistance; Sliding velocity; Rate independent theory; GRANULAR-MATERIALS; THEORETICAL-ANALYSIS; ELEMENT METHOD; RESISTANCE; SIMULATION; FRICTION; MODELS; ROTATIONS; STRENGTH;
D O I
10.1016/j.physa.2017.09.062
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Besides normal and tangential forces, rolling and sliding are also important interactions of particles, and should be considered in the discrete element method. However, there are various definitions of rolling and sliding, some of which are quite different and even contradictory. On the premise of trying not to use definitions, the rolling and sliding velocities between non-spherical particles are derived, and satisfy the objectivity. The sliding and rolling velocities between spherical particles are included in the results as a special case. A rolling resistance model calculated by the rolling velocity is applied to simulate direct shear tests of non-spherical particles. In addition to coinciding with experiments, the shear curves also satisfy the rate independent theory. As a demonstration of the model's universality, the wave propagation in uniaxial compression tests is also simulated. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:181 / 191
页数:11
相关论文
共 50 条
  • [21] Experimental investigation of segregation in a rotating drum with non-spherical particles
    Kumar, Sunil
    Khatoon, Salma
    Yogi, Jeetram
    Verma, Sanjay Kumar
    Anand, Anshu
    POWDER TECHNOLOGY, 2022, 411
  • [22] Fabrication and Characterization of Non-spherical Polymeric Particles
    Ajinkya Patil
    Sathish Dyawanapelly
    Prajakta Dandekar
    Ratnesh Jain
    Journal of Pharmaceutical Innovation, 2021, 16 : 747 - 758
  • [23] Coefficient of tangential restitution for non-spherical particles
    Wedel, Jana
    Hribersek, Matjaz
    Steinmann, Paul
    Ravnik, Jure
    POWDER TECHNOLOGY, 2024, 437
  • [24] Fabrication and Characterization of Non-spherical Polymeric Particles
    Patil, Ajinkya
    Dyawanapelly, Sathish
    Dandekar, Prajakta
    Jain, Ratnesh
    JOURNAL OF PHARMACEUTICAL INNOVATION, 2021, 16 (04) : 747 - 758
  • [25] Non-spherical particles for targeted drug delivery
    Chen, Jinrong
    Clay, Nicholas E.
    Park, No-hyung
    Kong, Hyunjoon
    CHEMICAL ENGINEERING SCIENCE, 2015, 125 : 20 - 24
  • [26] Voronoi analysis of the packings of non-spherical particles
    Dong, Kejun
    Wang, Chuncheng
    Yu, Aibing
    CHEMICAL ENGINEERING SCIENCE, 2016, 153 : 330 - 343
  • [27] On Monte Carlo for non-spherical and chiral particles
    Bruscaglioni, P
    Del Bianco, S
    Martelli, F
    Zaccanti, G
    Bazzini, G
    Gai, M
    Ismaelli, A
    13th International Workshop on Lidar Multiple Scattering Experiments, 2005, 5829 : 53 - 62
  • [28] Flow dynamics of binary mixtures of non-spherical particles in the rolling-regime rotating drum
    Yang, Shiliang
    Wang, Hua
    Wei, Yonggang
    Hu, Jianhang
    Chew, Jia Wei
    POWDER TECHNOLOGY, 2020, 361 : 930 - 942
  • [29] An impulse based model for spherical particle collisions with sliding and rolling
    Yu, Kuahai
    Elghannay, Husain A.
    Tafti, Danesh
    POWDER TECHNOLOGY, 2017, 319 : 102 - 116
  • [30] Numerical investigation of mixing and orientation of non-spherical particles in a model type fluidized bed
    Oschmann, T.
    Hold, J.
    Kruggel-Emden, H.
    POWDER TECHNOLOGY, 2014, 258 : 304 - 323