Rolling and sliding between non-spherical particles

被引:10
|
作者
Zhao, Chuang [1 ]
Li, Chengbo [2 ]
Hu, Lin [1 ]
机构
[1] Guizhou Univ, Coll Phys, Guiyang 550025, Guizhou, Peoples R China
[2] Anyang Inst Technol, Coll Math & Phys, Anyang 455000, Peoples R China
基金
中国国家自然科学基金;
关键词
Discrete element method; Non-spherical particles; Direct shears; Rolling resistance; Sliding velocity; Rate independent theory; GRANULAR-MATERIALS; THEORETICAL-ANALYSIS; ELEMENT METHOD; RESISTANCE; SIMULATION; FRICTION; MODELS; ROTATIONS; STRENGTH;
D O I
10.1016/j.physa.2017.09.062
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Besides normal and tangential forces, rolling and sliding are also important interactions of particles, and should be considered in the discrete element method. However, there are various definitions of rolling and sliding, some of which are quite different and even contradictory. On the premise of trying not to use definitions, the rolling and sliding velocities between non-spherical particles are derived, and satisfy the objectivity. The sliding and rolling velocities between spherical particles are included in the results as a special case. A rolling resistance model calculated by the rolling velocity is applied to simulate direct shear tests of non-spherical particles. In addition to coinciding with experiments, the shear curves also satisfy the rate independent theory. As a demonstration of the model's universality, the wave propagation in uniaxial compression tests is also simulated. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:181 / 191
页数:11
相关论文
共 50 条
  • [1] Suitable rolling resistance model for quasi-static shear tests of non-spherical particles via discrete element method
    Zhao, Chuang
    Luo, Yinghao
    Hu, Lin
    Li, Chengbo
    GRANULAR MATTER, 2018, 20 (04)
  • [2] A strategy to determine DEM parameters for spherical and non-spherical particles
    Elskamp, Frederik
    Kruggel-Emden, Harald
    Hennig, Manuel
    Teipel, Ulrich
    GRANULAR MATTER, 2017, 19 (03)
  • [3] Investigation of modeling non-spherical particles by using spherical discrete element model with rolling friction
    Xie, Changhua
    Ma, Huaqing
    Zhao, Yongzhi
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2019, 105 : 207 - 220
  • [4] Influence of rolling resistance on the shear curve of granular particles
    Zhao, Chuang
    Li, Chengbo
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2016, 460 : 44 - 53
  • [5] A revisit of common normal method for discrete modelling of non-spherical particles
    Kildashti, Kamyar
    Dong, Kejun
    Samali, Bijan
    POWDER TECHNOLOGY, 2018, 326 : 1 - 6
  • [6] Effects of particle characteristics and consolidation pressure on the compaction of non-spherical particles
    He, Y.
    Li, Y. Y.
    Evans, T. J.
    Yu, A. B.
    Yang, R. Y.
    MINERALS ENGINEERING, 2019, 137 : 241 - 249
  • [8] On definition of the parameters of non-spherical particles
    Kolomiets, SM
    NUCLEATION AND ATMOSPHERIC AEROSOLS 1996, 1996, : 605 - 607
  • [9] Semi-Analytical Model for Non-Spherical Particles
    Kacianauskas, Rimantas
    Ramirez-Gomez, Alvaro
    Radvilaite, Urte
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2014 (ICNAAM-2014), 2015, 1648
  • [10] Motion and heating of non-spherical particles in a plasma jet
    Xu, DY
    Wu, XC
    Chen, X
    SURFACE & COATINGS TECHNOLOGY, 2003, 171 (1-3) : 149 - 156