Nanobody stabilization of G protein-coupled receptor conformational states

被引:186
|
作者
Steyaert, Jan [1 ]
Kobilka, Brian K. [2 ]
机构
[1] Vrije Univ Brussel, Dept Mol & Cellular Interact, VIB & Struct Biol Brussels, B-1050 Brussels, Belgium
[2] Stanford Univ, Sch Med, Dept Mol & Cellular Physiol, Stanford, CA 94305 USA
基金
美国国家卫生研究院;
关键词
DOMAIN ANTIBODY FRAGMENTS; CRYSTAL-STRUCTURE; TERNARY COMPLEX; AGONIST; ARRESTIN; RECOGNITION; RHODOPSIN;
D O I
10.1016/j.sbi.2011.06.011
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Remarkable progress has been made in the field of G protein-coupled receptor (GPCR) structural biology during the past four years. Several obstacles to generating diffraction quality crystals of GPCRs have been overcome by combining innovative methods ranging from protein engineering to lipid-based screens and microdiffraction technology. The initial GPCR structures represent energetically stable inactive-state conformations. However, GPCRs signal through different G protein isoforms or G protein-independent effectors upon ligand binding suggesting the existence of multiple ligand-specific active states. These active-state conformations are unstable in the absence of specific cytosolic signaling partners representing new challenges for structural biology. Came lid single chain antibody fragments (nanobodies) show promise for stabilizing active GPCR conformations and as chaperones for crystallogenesis.
引用
收藏
页码:567 / 572
页数:6
相关论文
共 50 条
  • [41] Docosahexaenoic acid, G protein-coupled receptors, and melanoma: is G protein-coupled receptor 40 a potential therapeutic target?
    Nehra, Deepika
    Pan, Amy H.
    Le, Hau D.
    Fallon, Erica M.
    Carlson, Sarah J.
    Kalish, Brian T.
    Puder, Mark
    JOURNAL OF SURGICAL RESEARCH, 2014, 188 (02) : 451 - 458
  • [42] GPCRdb: the G protein-coupled receptor database - an introduction
    Munk, C.
    Isberg, V.
    Mordalski, S.
    Harpsoe, K.
    Rataj, K.
    Hauser, A. S.
    Kolb, P.
    Bojarski, A. J.
    Vriend, G.
    Gloriam, D. E.
    BRITISH JOURNAL OF PHARMACOLOGY, 2016, 173 (14) : 2195 - 2207
  • [43] Contribution of heteromerization to G protein-coupled receptor function
    Gaitonde, Supriya A.
    Gonzalez-Maeso, Javier
    CURRENT OPINION IN PHARMACOLOGY, 2017, 32 : 23 - 31
  • [44] Multiple Switches in G Protein-Coupled Receptor Activation
    Ahuja, Shivani
    Smith, Steven O.
    TRENDS IN PHARMACOLOGICAL SCIENCES, 2009, 30 (09) : 494 - 502
  • [45] G protein-coupled receptor sorting to endosomes and lysosomes
    Marchese, Adriano
    Paing, May M.
    Temple, Brenda R. S.
    Trejo, JoAnn
    ANNUAL REVIEW OF PHARMACOLOGY AND TOXICOLOGY, 2008, 48 : 601 - 629
  • [46] Chemical Diversity in the G Protein-Coupled Receptor Superfamily
    Vass, Marton
    Kooistra, Albert J.
    Yang, Dehua
    Stevens, Raymond C.
    Wang, Ming-Wei
    de Graaf, Chris
    TRENDS IN PHARMACOLOGICAL SCIENCES, 2018, 39 (05) : 494 - 512
  • [47] Structural Basis for G Protein-Coupled Receptor Signaling
    Erlandson, Sarah C.
    McMahon, Conor
    Kruse, Andrew C.
    ANNUAL REVIEW OF BIOPHYSICS, VOL 47, 2018, 47 : 1 - 18
  • [48] Structural Basis for G Protein-Coupled Receptor Activation
    Manglik, Aashish
    Kruse, Andrew C.
    BIOCHEMISTRY, 2017, 56 (42) : 5628 - 5634
  • [49] Diversity and modularity of G protein-coupled receptor structures
    Katritch, Vsevolod
    Cherezov, Vadim
    Stevens, Raymond C.
    TRENDS IN PHARMACOLOGICAL SCIENCES, 2012, 33 (01) : 17 - 27
  • [50] Conformational Ensemble View of G Protein-Coupled Receptors and the Effect of Mutations and Ligand Binding
    Abrol, Ravinder
    Kim, Soo-Kyung
    Bray, Jenelle K.
    Trzaskowski, Bartosz
    Goddard, William A., III
    G PROTEIN COUPLED RECEPTORS: STRUCTURE, 2013, 520 : 31 - 48