Markov chain Monte Carlo without likelihoods

被引:764
作者
Marjoram, P
Molitor, J
Plagnol, V
Tavaré, S
机构
[1] Univ So Calif, Dept Biol Sci, Program Mol & Computat Biol, Los Angeles, CA 90089 USA
[2] Univ So Calif, Div Biostat, Dept Prevent Med, Keck Sch Med, Los Angeles, CA 90089 USA
关键词
D O I
10.1073/pnas.0306899100
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Many stochastic simulation approaches for generating observations from a posterior distribution depend on knowing a likelihood function. However, for many complex probability models, such likelihoods are either impossible or computationally prohibitive to obtain. Here we present a Markov chain Monte Carlo method for generating observations from a posterior distribution without the use of likelihoods. it can also be used in frequentist applications, in particular for maximum-likelihood estimation. The approach is illustrated by an example of ancestral inference in population genetics. A number of open problems are highlighted in the discussion.
引用
收藏
页码:15324 / 15328
页数:5
相关论文
共 22 条
[1]  
[Anonymous], HDB STAT GENETICS
[2]  
[Anonymous], BAYES EMPIRICAL BAYE
[3]  
Balding D., 2001, HDB STAT GENETICS, P179, DOI DOI 10.2307/2419615
[4]  
Beaumont MA, 2002, GENETICS, V162, P2025
[5]  
CABRERA J, 1999, NEW COMPUTATIONAL AP
[6]  
DIGGLE PJ, 1984, J ROY STAT SOC B MET, V46, P193
[7]   Estimating the age of the common ancestor of a sample of DNA sequences [J].
Fu, YX ;
Li, WH .
MOLECULAR BIOLOGY AND EVOLUTION, 1997, 14 (02) :195-199
[8]  
Gelman A, 2013, BAYESIAN DATA ANAL, DOI DOI 10.1201/9780429258411
[9]   MONTE-CARLO SAMPLING METHODS USING MARKOV CHAINS AND THEIR APPLICATIONS [J].
HASTINGS, WK .
BIOMETRIKA, 1970, 57 (01) :97-&
[10]  
Kingman J.F., 1982, J. Appl. Probab., P27, DOI DOI 10.2307/3213548