The number of the CTCF binding sites of the H19/IGF2:IG-DMR correlates with DNA methylation and expression imprinting in a humanized mouse model

被引:12
作者
Freschi, Andrea [1 ,2 ]
Del Prete, Rosita [1 ]
Pignata, Laura [1 ]
Cecere, Francesco [1 ,3 ]
Manfrevola, Francesco [4 ]
Mattia, Monica [4 ]
Cobellis, Gilda [4 ]
Sparago, Angela [1 ]
Bartolomei, Marisa S. [5 ]
Riccio, Andrea [1 ,3 ]
Cerrato, Flavia [1 ]
机构
[1] Univ Campania Luigi Vanvitelli, Dept Environm Biol & Pharmaceut Sci & Technol DiS, I-81100 Caserta, Italy
[2] Ist Italiano Tecnol IIT, Genet & Epigenet Behav GEB, I-16163 Genoa, Italy
[3] Inst Genet & Biophys IGB Adriano Buzzati Traverso, Consiglio Nazl Ric CNR, I-80131 Naples, Italy
[4] Univ Campania Luigi Vanvitelli, Dept Expt Med, I-80138 Naples, Italy
[5] Univ Penn, Epigenet Inst, Dept Cell & Dev Biol, Perelman Sch Med, Philadelphia, PA 19104 USA
关键词
BECKWITH-WIEDEMANN-SYNDROME; PARTIAL DELETIONS; DEFECTS; REVEALS; GROWTH; LOCUS; PHENOTYPE;
D O I
10.1093/hmg/ddab132
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The reciprocal parent of origin-specific expression of H19 and IGF2 is controlled by the H19/IGF2:IG-DMR (IC1), whose maternal allele is unmethylated and acts as a CTCF-dependent insulator. In humans, internal IC1 deletions are associated with Beckwith-Wiedemann syndrome (BWS) and Silver-Russell syndrome (SRS), depending on their parental origin. These genetic mutations result in aberrant DNA methylation, deregulation of IGF2/H19 and disease with incomplete penetrance. However, the mechanism linking the microdeletions to altered molecular and clinical phenotypes remains unclear. To address this issue, we have previously generated and characterized two knock-in mouse lines with the human wild-type (hIC1wt) or mutant (hIC1 Delta 2.2) IC1 allele replacing the endogenous mouse IC1 (mIC1). Here, we report an additional knock-in line carrying a mutant hIC1 allele with an internal 1.8 kb deletion (hIC1 Delta 1.8). The phenotype of these mice is different from that of the hIC1 Delta 2.2-carrying mice, partially resembling hIC1wt animals. Indeed, proper H19 and Igf2 imprinting and normal growth phenotype were evident in the mice with maternal transmission of hIC1 Delta 1.8, while low DNA methylation and non-viable phenotype characterize its paternal transmission. In contrast to hIC1wt, E15.5 embryos that paternally inherit hIC1 Delta 1.8 displayed variegated hIC1 methylation. In addition, increased Igf2 expression, correlating with increased body weight, was found in one third of these mice. Chromatin immunoprecipitation experiments in mouse embryonic stem cells carrying the three different hIC1 alleles demonstrate that the number of CTCF target sites influences its binding to hIC1, indicating that in the mouse, CTCF binding is key to determining hIC1 methylation and Igf2 expression.
引用
收藏
页码:1509 / 1520
页数:12
相关论文
共 30 条
[1]   Origins of DNA methylation defects in Wilms tumors [J].
Anvar, Zahra ;
Acurzio, Basilia ;
Roma, Josep ;
Cerrato, Flavia ;
Verde, Gaetano .
CANCER LETTERS, 2019, 457 :119-128
[2]   ZFP57 recognizes multiple and closely spaced sequence motif variants to maintain repressive epigenetic marks in mouse embryonic stem cells [J].
Anvar, Zahra ;
Cammisa, Marco ;
Riso, Vincenzo ;
Baglivo, Ilaria ;
Kukreja, Harpreet ;
Sparago, Angela ;
Girardot, Michael ;
Lad, Shraddha ;
De Feis, Italia ;
Cerrato, Flavia ;
Angelini, Claudia ;
Feil, Robert ;
Pedone, Paolo V. ;
Grimaldi, Giovanna ;
Riccio, Andrea .
NUCLEIC ACIDS RESEARCH, 2016, 44 (03) :1118-1132
[3]   Genomic Imprinting in Mammals [J].
Barlow, Denise P. ;
Bartolomei, Marisa S. .
COLD SPRING HARBOR PERSPECTIVES IN BIOLOGY, 2014, 6 (02)
[4]   Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene [J].
Bell, AC ;
Felsenfeld, G .
NATURE, 2000, 405 (6785) :482-485
[5]   The molecular function and clinical phenotype of partial deletions of the IGF2/H19 imprinting control region depends on the spatial arrangement of the remaining CTCF-binding sites [J].
Beygo, Jasmin ;
Citro, Valentina ;
Sparago, Angela ;
De Crescenzo, Agostina ;
Cerrato, Flavia ;
Heitmann, Melanie ;
Rademacher, Katrin ;
Guala, Andrea ;
Enklaar, Thorsten ;
Anichini, Cecilia ;
Silengo, Margherita Cirillo ;
Graf, Notker ;
Prawitt, Dirk ;
Cubellis, Maria Vittoria ;
Horsthemke, Bernhard ;
Buiting, Karin ;
Riccio, Andrea .
HUMAN MOLECULAR GENETICS, 2013, 22 (03) :544-557
[6]   Clinical and molecular diagnosis, screening and management of Beckwith-Wiedemann syndrome: an international consensus statement [J].
Brioude, Frederic ;
Kalish, Jennifer M. ;
Mussa, Alessandro ;
Foster, Alison C. ;
Bliek, Jet ;
Ferrero, Giovanni Battista ;
Boonen, Susanne E. ;
Cole, Trevor ;
Baker, Robert ;
Bertoletti, Monica ;
Cocchi, Guido ;
Coze, Carole ;
De Pellegrin, Maurizio ;
Hussain, Khalid ;
Ibrahim, Abdulla ;
Kilby, Mark D. ;
Krajewska-Walasek, Malgorzata ;
Kratz, Christian P. ;
Ladusans, Edmund J. ;
Lapunzina, Pablo ;
Le Bouc, Yves ;
Maas, Saskia M. ;
Macdonald, Fiona ;
Ounap, Katrin ;
Peruzzi, Licia ;
Rossignol, Sylvie ;
Russo, Silvia ;
Shipster, Caroleen ;
Skorka, Agata ;
Tatton-Brown, Katrina ;
Tenorio, Jair ;
Tortora, Chiara ;
Gronskov, Karen ;
Netchine, Irene ;
Hennekam, Raoul C. ;
Prawitt, Dirk ;
Tumer, Zeynep ;
Eggermann, Thomas ;
Mackay, Deborah J. G. ;
Riccio, Andrea ;
Maher, Eamonn R. .
NATURE REVIEWS ENDOCRINOLOGY, 2018, 14 (04) :229-249
[7]   The two-domain hypothesis in Beckwith-Wiedemann syndrome: autonomous imprinting of the telomeric domain of the distal chromosome 7 cluster [J].
Cerrato, F ;
Sparago, A ;
Di Matteo, I ;
Zou, XG ;
Dean, W ;
Sasaki, H ;
Smith, P ;
Genesio, R ;
Bruggemann, M ;
Reik, W ;
Riccio, A .
HUMAN MOLECULAR GENETICS, 2005, 14 (04) :503-511
[8]   Different mechanisms cause imprinting defects at the IGF2/H19 locus in Beckwith-Wiedemann syndrome and Wilms' tumour [J].
Cerrato, Flavia ;
Sparago, Angela ;
Verde, Gaetano ;
De Crescenzo, Agostina ;
Citro, Valentina ;
Cubellis, Maria Vittoria ;
Rinaldi, Maria Michela ;
Boccuto, Luigi ;
Neri, Giovanni ;
Magnani, Cinzia ;
D'Angelo, Paolo ;
Collini, Paola ;
Perotti, Daniela ;
Sebastio, Gianfranco ;
Maher, Eamonn R. ;
Riccio, Andrea .
HUMAN MOLECULAR GENETICS, 2008, 17 (10) :1427-1435
[9]   Modeling human epigenetic disorders in mice: Beckwith-Wiedemann syndrome and Silver-Russell syndrome [J].
Chang, Suhee ;
Bartolomei, Marisa S. .
DISEASE MODELS & MECHANISMS, 2020, 13 (05)
[10]   A GROWTH-DEFICIENCY PHENOTYPE IN HETEROZYGOUS MICE CARRYING AN INSULIN-LIKE GROWTH FACTOR-II GENE DISRUPTED BY TARGETING [J].
DECHIARA, TM ;
EFSTRATIADIS, A ;
ROBERTSON, EJ .
NATURE, 1990, 345 (6270) :78-80