Preparation of CTCNFs/Co9S8 hybrid nanofibers with enhanced microwave absorption performance

被引:24
作者
Wang, Jiqi [1 ]
Wu, Fei [1 ]
Yang, Zuoting [1 ]
Shah, Tariq [1 ]
Zhang, Aibo [1 ]
Zhang, Qiuyu [1 ,2 ]
Zhang, Baoliang [1 ,3 ]
机构
[1] Northwestern Polytech Univ, Sch Nat & Appl Sci, Xian 710129, Peoples R China
[2] Northwestern Polytech Univ, MOE Key Lab Mat Phys & Chem Extraordinary Condit, Minist Educ, Xian 710072, Peoples R China
[3] Northwestern Polytech Univ, Xian Key Lab Funct Organ Porous Mat, Xian 710072, Peoples R China
基金
中国国家自然科学基金;
关键词
hybrid nanofibers; microwave absorption; enhanced interfacial polarization; Co9S8; nanoparticles; one-dimensional material; TUBULAR CARBON NANOFIBERS; GRAPHENE; EFFICIENT; FOAM; FIBERS; NANOCOMPOSITES; COMPOSITES; ADSORPTION; ULTRALIGHT; SPHERES;
D O I
10.1088/1361-6528/ab767d
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A three-step synthesis strategy has been applied to the preparation of Co9S8-loaded tubular carbon nanofibers (CTCNFs/Co9S8 hybrid nanofibers) with excellent microwave absorbing ability. Firstly, tubular polymer nanofibers (TPNFs) are synthesized using the confined self-condensation method that we developed. Afterwards, TPNFs are converted into surface carboxylated tubular carbon nanofibers (CTCNFs) by carbonization and subsequent acidification processes. Finally, a hydrothermal method is used for the controllable growth of Co9S8 nanoparticles on CTCNFs, and a series of CTCNFs/Co9S8 hybrid nanofibers with different Co9S8 loading are obtained. The prepared CTCNFs/Co9S8 hybrid nanofibers possess abundant effective interface and defect dipoles, which will lead to stronger polarization. Using the strategy of enhancing dielectric loss, the microwave dissipation ability of CTCNFs/Co9S8 hybrid nanofibers has been significantly improved, showing an excellent low-frequency absorbing performance with a minimum reflection loss of -46.81 dB@5.3 GHz. In addition, the composition, structure and properties of nanofibers have been systematically characterized. The Co9S8 loading on CTCNFs and the filler content of CTCNFs/Co9S8 hybrid nanofibers in matrix are studied and optimized. The microwave attenuation mechanism is also explained.
引用
收藏
页数:15
相关论文
共 50 条
[1]   Magnetic tubular carbon nanofibers as efficient Cu(II) ion adsorbent from wastewater [J].
Ahmad, Mudasir ;
Wang, Jiqi ;
Xu, Jia ;
Zhang, Qiuyu ;
Zhang, Baoliang .
JOURNAL OF CLEANER PRODUCTION, 2020, 252
[2]   Porous Graphene Microflowers for High-Performance Microwave Absorption [J].
Chen, Chen ;
Xi, Jiabin ;
Zhou, Erzhen ;
Peng, Li ;
Chen, Zichen ;
Gao, Chao .
NANO-MICRO LETTERS, 2018, 10 (02)
[3]   Synergistically assembled MWCNT/graphene foam with highly efficient microwave absorption in both C and X bands [J].
Chen, Honghui ;
Huang, Zhiyu ;
Huang, Yi ;
Zhang, Yi ;
Ge, Zhen ;
Qin, Bin ;
Liu, Zunfeng ;
Shi, Qian ;
Xiao, Peishuang ;
Yang, Yang ;
Zhang, Tengfei ;
Chen, Yongsheng .
CARBON, 2017, 124 :506-514
[4]   Engineering morphology configurations of hierarchical flower-like MoSe2 spheres enable excellent low-frequency and selective microwave response properties [J].
Cheng, Yan ;
Zhao, Yue ;
Zhao, Huanqin ;
Lv, Hualiang ;
Qi, Xiaodong ;
Cao, Jieming ;
Ji, Guangbin ;
Du, Youwei .
CHEMICAL ENGINEERING JOURNAL, 2019, 372 :390-398
[5]   Rationally regulating complex dielectric parameters of mesoporous carbon hollow spheres to carry out efficient microwave absorption [J].
Cheng, Yan ;
Li, Zhaoyong ;
Li, Yong ;
Dai, Sisi ;
Ji, Guangbin ;
Zhao, Huanqin ;
Cao, Jieming ;
Du, Youwei .
CARBON, 2018, 127 :643-652
[6]   Customized unique core-shell Fe2N@N-doped carbon with tunable void space for microwave response [J].
Cui, Xiaoqing ;
Liang, Xiaohui ;
Chen, Jiabin ;
Gu, Weihua ;
Ji, Guangbin ;
Du, Youwei .
CARBON, 2020, 156 :49-57
[7]   Stable microwave absorber derived from 1D customized heterogeneous structures of Fe3N@C [J].
Cui, Xiaoqing ;
Liang, Xiaohui ;
Liu, Wei ;
Gu, Weihua ;
Ji, Guangbin ;
Du, Youwei .
CHEMICAL ENGINEERING JOURNAL, 2020, 381
[8]   Effect of short carbon fibers and MWCNTs on microwave absorbing properties of polyester composites containing nickel-coated carbon fibers [J].
De Rosa, Igor Maria ;
Dinescu, Adrian ;
Sarasini, Fabrizio ;
Sarto, Maria Sabrina ;
Tamburrano, Alessio .
COMPOSITES SCIENCE AND TECHNOLOGY, 2010, 70 (01) :102-109
[9]   Fluffy microrods to heighten the microwave absorption properties through tuning the electronic state of Co/CoO [J].
Deng, Jiushuai ;
Zhang, Xi ;
Zhao, Biao ;
Bai, Zhongyi ;
Wen, Shuming ;
Li, Shimei ;
Li, Shaoyuan ;
Yang, Jia ;
Zhang, Rui .
JOURNAL OF MATERIALS CHEMISTRY C, 2018, 6 (26) :7128-7140
[10]   Boosted Interfacial Polarization from Multishell TiO2@Fe3O4@PPy Heterojunction for Enhanced Microwave Absorption [J].
Ding, Jingjun ;
Wang, Lei ;
Zhao, Yunhao ;
Xing, Linshen ;
Yu, Xuefeng ;
Chen, Guanyu ;
Zhang, Jie ;
Che, Renchao .
SMALL, 2019, 15 (36)