Robust Monte Carlo localization for mobile robots

被引:998
|
作者
Thrun, S [1 ]
Fox, D
Burgard, W
Dellaert, F
机构
[1] Carnegie Mellon Univ, Sch Comp Sci, Pittsburgh, PA 15213 USA
[2] Univ Washington, Dept Comp Sci & Engn, Seattle, WA 98195 USA
[3] Univ Freiburg, Dept Comp Sci, Freiburg, Germany
基金
美国国家科学基金会;
关键词
mobile robots; localization; position estimation; particle filters; kernel density trees;
D O I
10.1016/S0004-3702(01)00069-8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Mobile robot localization is the problem of determining a robot's pose from sensor data. This article presents a family of probabilistic localization algorithms known a:; Monte Carlo Localization (MCL). MCL algorithms represent a robot's belief by a set of weighted hypotheses (samples), which approximate the posterior under a common Bayesian formulation of the localization problem. Building on the basic MCL algorithm, this article develops a more robust algorithm called Mixture-MCL, which integrates two complimentary ways of generating samples in the estimation. To apply this algorithm to mobile robots equipped with range finders, a kernel density tree is learned that permits fast sampling. Systematic empirical results illustrate the robustness and computational efficiency of the approach. (C) 2001 Published by Elsevier Science B.V.
引用
收藏
页码:99 / 141
页数:43
相关论文
共 50 条
  • [41] Dynamic Ultrasonic Hybrid Localization System for Indoor Mobile Robots
    Kim, Seong Jin
    Kim, Byung Kook
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2013, 60 (10) : 4562 - 4573
  • [42] Enhanced resampling scheme for Monte Carlo localization
    Karakaya, Suat
    INTELLIGENT SERVICE ROBOTICS, 2024, 17 (03) : 703 - 714
  • [43] System for Indoor Localization of Mobile Robots by Using Machine Vision
    Jankovic, Nemanja V.
    Ciric, Svetislav V.
    Jovicic, Nenad S.
    2015 23RD TELECOMMUNICATIONS FORUM TELFOR (TELFOR), 2015, : 619 - 622
  • [44] MONTE CARLO EXPLORATION FOR ACTIVE BINAURAL LOCALIZATION
    Schymura, Christopher
    Grajales, Juan Diego Rios
    Kolossa, Dorothea
    2017 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2017, : 491 - 495
  • [45] Monte Carlo Based Wireless Node Localization
    Kurecka, A.
    Konecny, J.
    Prauzek, M.
    Koziorek, J.
    ELEKTRONIKA IR ELEKTROTECHNIKA, 2014, 20 (06) : 12 - 16
  • [46] Improvement in Monte Carlo localization using information theory and statistical approaches
    Mohseni, Alireza
    Duchaine, Vincent
    Wong, Tony
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 131
  • [47] Localization with dynamic motion models - Determining motion model parameters dynamically in Monte Carlo Localization
    Milstein, Adam
    Wang, Tao
    ICINCO 2006: PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE ON INFORMATICS IN CONTROL, AUTOMATION AND ROBOTICS: ROBOTICS AND AUTOMATION, 2006, : 120 - 127
  • [48] Toward Robust RFID Localization via Mobile Robot
    Zhang, Jiuwu
    Liu, Xiulong
    Chen, Sheng
    Tong, Xinyu
    Deng, Zeyu
    Gu, Tao
    Li, Keqiu
    IEEE-ACM TRANSACTIONS ON NETWORKING, 2024, 32 (04) : 2904 - 2919
  • [49] Evolutionary filter for robust mobile robot global localization
    Moreno, L.
    Garrido, S.
    Munoz, M. L.
    ROBOTICS AND AUTONOMOUS SYSTEMS, 2006, 54 (07) : 590 - 600
  • [50] A Localization Algorithm for Mobile Robots in RFID system
    Jing, Liu
    Yang, Po
    2007 INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS, NETWORKING AND MOBILE COMPUTING, VOLS 1-15, 2007, : 2109 - +