Robust Monte Carlo localization for mobile robots

被引:1016
作者
Thrun, S [1 ]
Fox, D
Burgard, W
Dellaert, F
机构
[1] Carnegie Mellon Univ, Sch Comp Sci, Pittsburgh, PA 15213 USA
[2] Univ Washington, Dept Comp Sci & Engn, Seattle, WA 98195 USA
[3] Univ Freiburg, Dept Comp Sci, Freiburg, Germany
基金
美国国家科学基金会;
关键词
mobile robots; localization; position estimation; particle filters; kernel density trees;
D O I
10.1016/S0004-3702(01)00069-8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Mobile robot localization is the problem of determining a robot's pose from sensor data. This article presents a family of probabilistic localization algorithms known a:; Monte Carlo Localization (MCL). MCL algorithms represent a robot's belief by a set of weighted hypotheses (samples), which approximate the posterior under a common Bayesian formulation of the localization problem. Building on the basic MCL algorithm, this article develops a more robust algorithm called Mixture-MCL, which integrates two complimentary ways of generating samples in the estimation. To apply this algorithm to mobile robots equipped with range finders, a kernel density tree is learned that permits fast sampling. Systematic empirical results illustrate the robustness and computational efficiency of the approach. (C) 2001 Published by Elsevier Science B.V.
引用
收藏
页码:99 / 141
页数:43
相关论文
共 76 条
[1]  
[Anonymous], P EUR C COMP VIS
[2]  
Bar-Shalom Y., 1998, ESTIMATION TRACKING
[3]  
BARSHALOM Y, 1998, TRACKING DATA ASS
[4]   MULTIDIMENSIONAL DIVIDE-AND-CONQUER [J].
BENTLEY, JL .
COMMUNICATIONS OF THE ACM, 1980, 23 (04) :214-229
[5]  
Borenstein J., 1996, NAVIGATING MOBILE RO
[6]   Experiences with an interactive museum tour-guide robot [J].
Burgard, W ;
Cremers, AB ;
Fox, D ;
Hähnel, D ;
Lakemeyer, G ;
Schulz, D ;
Steiner, W ;
Thrun, S .
ARTIFICIAL INTELLIGENCE, 1999, 114 (1-2) :3-55
[7]  
BURGARD W, 1996, P AAIA 96 PORTL OR
[8]  
BURGARD W, 1998, P IEEE RSJ INT C INT
[9]  
Cox I. J., 1990, AUTONOMOUS ROBOT VEH
[10]   MODELING A DYNAMIC ENVIRONMENT USING A BAYESIAN MULTIPLE HYPOTHESIS APPROACH [J].
COX, IJ ;
LEONARD, JJ .
ARTIFICIAL INTELLIGENCE, 1994, 66 (02) :311-344