Some qualitative studies of the focusing inhomogeneous Gross-Pitaevskii equation

被引:8
作者
Ardila, Alex H. [1 ]
Van Duong Dinh [2 ,3 ]
机构
[1] Univ Fed Minas Gerais, ICEx, Av Antonio Carlos 6627,Caixa Postal 702, BR-30123970 Belo Horizonte, MG, Brazil
[2] Univ Lille, CNRS, Lab Paul Painleve, UMR 8524, F-59655 Villeneuve Dascq, France
[3] HCMC Univ Pedag, Dept Math, 280 An Duong Vuong, Ho Chi Minh, Vietnam
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2020年 / 71卷 / 03期
关键词
Inhomogeneous NLS; Ground states; Stability; Instability; Blowup; NONLINEAR SCHRODINGER-EQUATIONS; STANDING WAVES; GLOBAL EXISTENCE; SHARP THRESHOLD; WELL-POSEDNESS; BLOW-UP; STABILITY; INSTABILITY; NLS;
D O I
10.1007/s00033-020-01301-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the Cauchy problem for an inhomogeneous Gross-Pitaevskii equation. We first derive a sharp threshold for global existence and blowup of the solution. Then, we construct and classify finite time blowup solutions at the minimal mass threshold. Additionally, using variational techniques, we study the existence, the orbital stability and instability of standing waves.
引用
收藏
页数:24
相关论文
共 31 条
[1]  
[Anonymous], 2003, Courant Lecture Notes
[2]  
[Anonymous], 2009, New York J. Math.
[3]  
[Anonymous], 2010, Nonlinear Fiber Optics, Optics and Photonics
[4]   Ground-state properties of magnetically trapped Bose-condensed rubidium gas [J].
Baym, G ;
Pethick, CJ .
PHYSICAL REVIEW LETTERS, 1996, 76 (01) :6-9
[5]   Existence and Stability of Standing Waves for Supercritical NLS with a Partial Confinement [J].
Bellazzini, Jacopo ;
Boussaid, Nabile ;
Jeanjean, Louis ;
Visciglia, Nicola .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2017, 353 (01) :229-251
[6]   Critical nonlinear Schrodinger equations with and without harmonic potential [J].
Carles, R .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2002, 12 (10) :1513-1523
[7]   Remarks on nonlinear Schrodinger equations with harmonic potential [J].
Carles, R .
ANNALES HENRI POINCARE, 2002, 3 (04) :757-772
[8]  
Chen JQ, 2007, DISCRETE CONT DYN-B, V8, P357
[9]   On a class of nonlinear inhomogeneous Schrödinger equation [J].
Chen J. .
Journal of Applied Mathematics and Computing, 2010, 32 (01) :237-253
[10]   ON THE INHOMOGENEOUS NONLINEAR SCHRODINGER EQUATION WITH HARMONIC POTENTIAL AND UNBOUNDED COEFFICIENT [J].
Chen, Jianqing .
CZECHOSLOVAK MATHEMATICAL JOURNAL, 2010, 60 (03) :715-736