Positive solutions for nonlinear Schrodinger-Kirchhoff equations in R3

被引:21
作者
Chen, Wei [1 ,2 ]
Fu, Zunwei [1 ,3 ]
Wu, Yue [1 ]
机构
[1] Linyi Univ, Sch Math & Stat, Linyi 276100, Shandong, Peoples R China
[2] Univ Suwon, Coll Informat Technol, Hwaseong Si 18323, South Korea
[3] Qufu Normal Univ, Sch Math Sci, Qufu 273165, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Schrodinger-Kirchhoff-type equations; Variational methods; Lagrange multiplier rule; Pohozaev equality; EXISTENCE;
D O I
10.1016/j.aml.2020.106274
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the nonlinear Schrodinger-Kirchhoff-type equation with pure power nonlinearities in R-3 by variational methods. By carrying out the constrained minimization on a special manifold which is a combination of the Nehari manifold and Pohozaev manifold, we proved the existence of positive radial solutions of this equation for the power p is an element of (1,5). The results of this paper extend some existing conclusions, especially for p is an element of (1, 2). (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:6
相关论文
共 13 条
[1]   Nonlinear perturbations of a periodic Kirchhoff equation in RN [J].
Alves, Claudianor O. ;
Figueiredo, Giovany M. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (05) :2750-2759
[2]  
Azzollini A, 2012, DIFFER INTEGRAL EQU, V25, P543
[3]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
[4]   Standing waves for 4-superlinear Schrodinger-Kirchhoff equations [J].
Chen, Shaowei ;
Liu, Shibo .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2015, 38 (11) :2185-2193
[5]   Existence and Concentration Result for the Kirchhoff Type Equations with General Nonlinearities [J].
Figueiredo, Giovany M. ;
Ikoma, Norihisa ;
Santos Junior, Joao R. .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2014, 213 (03) :931-979
[6]   Existence and concentration behavior of positive solutions for a Kirchhoff equation in R3 [J].
He, Xiaoming ;
Zou, Wenming .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (02) :1813-1834
[7]  
Kirchhoff G., 1883, MECHANIK
[8]   The Schrodinger-Poisson equation under the effect of a nonlinear local term [J].
Ruiz, D .
JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 237 (02) :655-674
[9]   Nontrivial solutions of Kirchhoff type problems [J].
Sun, Juan ;
Liu, Shibo .
APPLIED MATHEMATICS LETTERS, 2012, 25 (03) :500-504
[10]   Ground state solutions for an indefinite Kirchhoff type problem with steep potential well [J].
Sun, Juntao ;
Wu, Tsung-fang .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 256 (04) :1771-1792