On S-multiplication modules

被引:26
作者
Anderson, Dan D. [1 ]
Arabaci, Tarik [2 ]
Tekir, Unsal [3 ]
Koc, Suat [3 ]
机构
[1] Univ Iowa, Dept Math, Iowa City, IA 52242 USA
[2] Istanbul Bilgi Univ, Dept Math, TR-34387 Istanbul, Turkey
[3] Marmara Univ, Dept Math, Istanbul, Turkey
关键词
multiplication module; prime submodule; S-multiplication module; S-prime submodule;
D O I
10.1080/00927872.2020.1737873
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we introduce S-multiplication modules which are a generalization of multiplication modules. Let M be an R-module and a multiplicatively closed subset. M is said to be an S-multiplication module if for each submodule N of M there exist and an ideal I of R such that Besides giving many properties of S-multiplication modules, we generalize some results on multiplication modules to S-multiplication modules. Also, we study S-prime submodules in S-multiplication modules. In particular, we generalize prime avoidance lemma for multiplication modules to S -multiplication modules. Furthermore, we characterize multiplication modules in terms of S-multiplication modules. Communicated by Toma Albu
引用
收藏
页码:3398 / 3407
页数:10
相关论文
共 7 条
[1]   IDEALIZATION OF A MODULE [J].
Anderson, D. D. ;
Winders, Michael .
JOURNAL OF COMMUTATIVE ALGEBRA, 2009, 1 (01) :3-56
[2]   S-Noetherian rings [J].
Anderson, DD ;
Dumitrescu, T .
COMMUNICATIONS IN ALGEBRA, 2002, 30 (09) :4407-4416
[3]   Some remarks on multiplication ideals, II [J].
Anderson, DD .
COMMUNICATIONS IN ALGEBRA, 2000, 28 (05) :2577-2583
[4]   MULTIPLICATION MODULES [J].
ELBAST, ZA ;
SMITH, PF .
COMMUNICATIONS IN ALGEBRA, 1988, 16 (04) :755-779
[5]  
Lu CP, 1997, HOUSTON J MATH, V23, P203
[6]   On S-prime submodules [J].
Sengelen Sevim, Esra ;
Arabaci, Tarik ;
Tekir, Unsal ;
Koc, Suat .
TURKISH JOURNAL OF MATHEMATICS, 2019, 43 (02) :1036-1046
[7]   S-Artinian rings and finitely S-cogenerated rings [J].
Sevim, Esra Sengelen ;
Tekir, Unsal ;
Koc, Suat .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2020, 19 (03)