How mitochondria fuse

被引:88
作者
Meeusen, SL [1 ]
Nunnari, J [1 ]
机构
[1] Univ Calif Davis, Dept Mol & Cellular Biol, Davis, CA 95616 USA
关键词
D O I
10.1016/j.ceb.2005.06.014
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Mitochondrial fusion is unique; no paradigm exists to explain how two sets of compositionally distinct membranes become coordinately fused. Genetic approaches coupled with in vivo observations of mitochondrial dynamics and morphology have identified the machinery involved in mitochondrial fusion but these approaches alone yield limited mechanistic insight. The recent recapitulation of mitochondrial fusion in vitro has allowed the fusion process to be dissected into two mechanistically distinct, resolvable steps: outer membrane fusion and inner membrane fusion. Outer membrane fusion requires homotypic trans interactions of the ancient dynamin-related GTPase Fzo1, the proton-gradient component of the inner membrane electrical potential, and low levels of GTP hydrolysis. Fusion of inner membranes requires the electrical component (Delta psi) of the inner membrane electrical potential and elevated levels of GTP hydrolysis. Regulation of mitochondrial fusion is likely to involve transcript processing in mammalian cells as well as variation in the level of fusion proteins in a given cell; slight changes in the electrical potential of the inner membrane may also serve to fine-tune fusion rates. Mitochondrial fusion components also serve to protect cells against apoptosis through mechanisms that are largely unknown. Resolving the mechanism of mitochondrial fusion will provide insight into the role of fusion components in apoptosis.
引用
收藏
页码:389 / 394
页数:6
相关论文
共 36 条
[1]   OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28 [J].
Alexander, C ;
Votruba, M ;
Pesch, UEA ;
Thiselton, DL ;
Mayer, S ;
Moore, A ;
Rodriguez, M ;
Kellner, U ;
Leo-Kottler, B ;
Auburger, G ;
Bhattacharya, SS ;
Wissinger, B .
NATURE GENETICS, 2000, 26 (02) :211-215
[2]   A novel role of Mgm1p, a dynamin-related GTPase, in ATP synthase assembly and cristae formation/maintenance [J].
Amutha, B ;
Gordon, DM ;
Gu, YJ ;
Pain, D .
BIOCHEMICAL JOURNAL, 2004, 381 :19-23
[3]   Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development [J].
Chen, HC ;
Detmer, SA ;
Ewald, AJ ;
Griffin, EE ;
Fraser, SE ;
Chan, DC .
JOURNAL OF CELL BIOLOGY, 2003, 160 (02) :189-200
[4]   Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy [J].
Delettre, C ;
Lenaers, G ;
Griffoin, JM ;
Gigarel, N ;
Lorenzo, C ;
Belenguer, P ;
Pelloquin, L ;
Grosgeorge, J ;
Turc-Carel, C ;
Perret, E ;
Astarie-Dequeker, C ;
Lasquellec, L ;
Arnaud, B ;
Ducommun, B ;
Kaplan, J ;
Hamel, CP .
NATURE GENETICS, 2000, 26 (02) :207-210
[5]   Two mitofusin proteins, mammalian homologues of FZO, with distinct functions are both required for mitochondrial fusion [J].
Eura, Y ;
Ishihara, N ;
Yokota, S ;
Mihara, K .
JOURNAL OF BIOCHEMISTRY, 2003, 134 (03) :333-344
[6]   The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis [J].
Frank, S ;
Gaume, B ;
Bergmann-Leitner, ES ;
Leitner, WW ;
Robert, EG ;
Catez, F ;
Smith, CL ;
Youle, RJ .
DEVELOPMENTAL CELL, 2001, 1 (04) :515-525
[7]   Yeast Miro GTPase, Gem1p, regulates mitochondrial morphology via a novel pathway [J].
Frederick, RL ;
McCaffery, JM ;
Cunningham, KW ;
Okamoto, K ;
Shaw, JM .
JOURNAL OF CELL BIOLOGY, 2004, 167 (01) :87-98
[8]   Connection of the mitochondrial outer and inner membranes by Fzo1 is critical for organellar fusion [J].
Fritz, S ;
Rapaport, D ;
Klanner, E ;
Neupert, W ;
Westermann, B .
JOURNAL OF CELL BIOLOGY, 2001, 152 (04) :683-692
[9]   Mdm30 is an F-box protein required for maintenance of fusion-competent mitochondria in yeast [J].
Fritz, S ;
Weinbach, N ;
Westermann, B .
MOLECULAR BIOLOGY OF THE CELL, 2003, 14 (06) :2303-2313
[10]   Mitochondrial programmed cell death pathways in yeast [J].
Hardwick, JM ;
Cheng, WC .
DEVELOPMENTAL CELL, 2004, 7 (05) :630-632