Multiple Network Binders via Dual Cross-Linking for Silicon Anodes of Lithium-Ion Batteries

被引:40
作者
Jiao, Xingxing [1 ]
Yuan, Xiaodong [1 ]
Yin, Jianqing [1 ]
Ajdari, Farshad Boorboor [2 ]
Feng, Yangyang [1 ]
Gao, Guoxin [3 ]
Song, Jiangxuan [1 ]
机构
[1] Xi An Jiao Tong Univ, Shaanxi Int Res Ctr Soft Matter, State Key Lab Mech Behav Mat, Xian 710049, Peoples R China
[2] Univ Kashan, Fac Chem, Dept Appl Chem, Kashan 8731753153, Iran
[3] Xi An Jiao Tong Univ, Sch Chem, Xian 710049, Peoples R China
基金
中国国家自然科学基金;
关键词
lithium-ion batteries; silicon anode; binder; water-soluble polymer; dual cross-linking network; HIGH-CAPACITY; POLYMERIC BINDERS; PERFORMANCE; COPOLYMER; NANOCOMPOSITES; NANOPARTICLES; STABILITY; STORAGE; DESIGN; ACID);
D O I
10.1021/acsaem.1c02231
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Silicon has attracted much attention as a promising anode material in lithium-ion batteries owing to its high specific capacity. However, silicon anode suffers large volume expansion during periodical lithiation/delithiation processes, leading to particle pulverization and thus electrochemical performance degradation. Herein, we report a water-soluble three-dimensional network polymer binder for silicon anode in which the introduced poly(ethylene glycol) and divalent cation Ca2+ can form chemical cross-linking and physical cross-linking with poly(acrylic acid), respectively. Poly(ethylene glycol) serves as a soft segment to regulate the mechanical properties of the polymer, and the divalent cation Ca2+ acts as a physical cross-linking agent to form a dual network with poly(acrylic acid). The multiple network binder owns good mechanical strength, strain resistance ability, and strong adhesion with Si particles and Cu collector, thereby preserving the stability of the silicon electrode. Therefore, silicon anode with this rationally designed binder exhibits excellent electrochemical performance with a discharge capacity of 1596 mAh/g after 800 cycles at a current density of 2 A/g. This design can provide a way to alleviate the volume expansion of the silicon anode and other high-capacity alloy anodes with large volume change for advanced batteries.
引用
收藏
页码:10306 / 10313
页数:8
相关论文
共 59 条
[1]   Improving the Stability of Nanostructured Silicon Thin Film Lithium-Ion Battery Anodes through Their Controlled Oxidation [J].
Abel, Paul R. ;
Lin, Yong-Mao ;
Celio, Hugo ;
Heller, Adam ;
Mullins, C. Buddie .
ACS NANO, 2012, 6 (03) :2506-2516
[2]   Two-Dimensional Silicon/Carbon from Commercial Alloy and CO2 for Lithium Storage and Flexible Ti3C2Tx MXene-Based Lithium-Metal Batteries [J].
An, Yongling ;
Tian, Yuan ;
Zhang, Yuchan ;
Wei, Chuanliang ;
Tan, Liwen ;
Zhang, Chenghui ;
Cui, Naxin ;
Xiong, Shenglin ;
Feng, Jinkui ;
Qian, Yitai .
ACS NANO, 2020, 14 (12) :17574-17588
[3]   Green, Scalable, and Controllable Fabrication of Nanoporous Silicon from Commercial Alloy Precursors for High-Energy Lithium-Ion Batteries [J].
An, Yongling ;
Fei, Huifang ;
Zeng, Guifang ;
Ci, Lijie ;
Xiong, Shenglin ;
Feng, Jinkui ;
Qian, Yitai .
ACS NANO, 2018, 12 (05) :4993-5002
[4]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[5]   Rational Design of a Multifunctional Binder for High-Capacity Silicon-Based Anodes [J].
Cao, Peng-Fei ;
Yang, Guang ;
Li, Bingrui ;
Zhang, Yiman ;
Zhao, Sheng ;
Zhang, Shuo ;
Erwin, Andrew ;
Zhang, Zhengcheng ;
Sokolov, Alexei P. ;
Nanda, Jagjit ;
Saito, Tomonori .
ACS ENERGY LETTERS, 2019, 4 (05) :1171-1180
[6]   A High-Energy Li-Ion Battery Using a Silicon-Based Anode and a Nano-Structured Layered Composite Cathode [J].
Chae, Changju ;
Noh, Hyung-Joo ;
Lee, Jung Kyoo ;
Scrosati, Bruno ;
Sun, Yang-Kook .
ADVANCED FUNCTIONAL MATERIALS, 2014, 24 (20) :3036-3042
[7]   Exploring Chemical, Mechanical, and Electrical Functionalities of Binders for Advanced Energy-Storage Devices [J].
Chen, Hao ;
Ling, Min ;
Hencz, Luke ;
Ling, Han Yeu ;
Li, Gaoran ;
Lin, Zhan ;
Liu, Gao ;
Zhang, Shanqing .
CHEMICAL REVIEWS, 2018, 118 (18) :8936-8982
[8]   Silicon core-hollow carbon shell nanocomposites with tunable buffer voids for high capacity anodes of lithium-ion batteries [J].
Chen, Shuru ;
Gordin, Mikhail L. ;
Yi, Ran ;
Howlett, Giles ;
Sohn, Hiesang ;
Wang, Donghai .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2012, 14 (37) :12741-12745
[9]   High-Areal-Capacity Silicon Electrodes with Low-Cost Silicon Particles Based on Spatial Control of Self-Healing Binder [J].
Chen, Zheng ;
Wang, Chao ;
Lopez, Jeffrey ;
Lu, Zhenda ;
Cui, Yi ;
Bao, Zhenan .
ADVANCED ENERGY MATERIALS, 2015, 5 (08)
[10]   A Pyrene-Poly(acrylic acid)-Polyrotaxane Supramolecular Binder Network for High-Performance Silicon Negative Electrodes [J].
Cho, Yunshik ;
Kim, Jaemin ;
Elabd, Ahmed ;
Choi, Sunghun ;
Park, Kiho ;
Kwon, Tae-woo ;
Lee, Jungmin ;
Char, Kookheon ;
Coskun, Ali ;
Choi, Jang Wook .
ADVANCED MATERIALS, 2019, 31 (51)