BEHAVIOR OF SOLUTIONS OF THE DIRICHLET PROBLEM FOR THE p(x)-LAPLACIAN AT A BOUNDARY POINT

被引:10
|
作者
Alkhutov, Yu A. [1 ]
Surnachev, M. D. [2 ]
机构
[1] Vladimir State Univ, Gorkogo St 87, Vladimir 600000, Russia
[2] Russian Acad Sci, Keldysh Inst Appl Math, Miusskaya Pl 4, Moscow 125047, Russia
基金
俄罗斯基础研究基金会;
关键词
Wiener criterion; boundary regularity; Dirichlet problem; variable exponent; p(x)-Laplacian; REGULARITY;
D O I
10.1090/spmj/1595
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Dirichlet problem for the p(x)-Laplacian with a continuous boundary function is treated. A sufficient condition is indicated for the regularity of a boundary point, and the modulus of continuity of solutions at this point is estimated.
引用
收藏
页码:251 / 271
页数:21
相关论文
共 50 条
  • [31] On the Regularity of a Boundary Point for the p(x)-Laplacian
    Yu. A. Alkhutov
    M. D. Surnachev
    Doklady Mathematics, 2018, 97 : 65 - 68
  • [32] On the Regularity of a Boundary Point for the p(x)-Laplacian
    Alkhutov, Yu. A.
    Surnachev, M. D.
    DOKLADY MATHEMATICS, 2018, 97 (01) : 65 - 68
  • [33] Regularity of a Boundary Point for the p(x)-Laplacian
    Alkhutov Y.A.
    Surnachev M.D.
    Journal of Mathematical Sciences, 2018, 232 (3) : 206 - 231
  • [34] A p(x)-Kirchhoff type problem involving the p(x)-Laplacian-like operators with Dirichlet boundary condition
    El Ouaarabi, Mohamed
    El Hammar, Hasnae
    Allalou, Chakir
    Melliani, Said
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2024, 69 (02): : 351 - 366
  • [35] Existence of non-zero solutions for a Dirichlet problem driven by (p(x),q(x)-Laplacian
    Chinni, A.
    Sciammetta, A.
    Tornatore, E.
    APPLICABLE ANALYSIS, 2022, 101 (15) : 5323 - 5333
  • [36] Two positive solutions for a Dirichlet problem with the (p,q)-Laplacian
    Sciammetta, Angela
    Tornatore, Elisabetta
    MATHEMATISCHE NACHRICHTEN, 2020, 293 (05) : 1004 - 1013
  • [37] WEAK SOLUTION FOR FRACTIONAL p(x)-LAPLACIAN PROBLEM WITH DIRICHLET-TYPE BOUNDARY CONDITION
    Sabri, Abdelali
    Jamea, Ahmed
    Alaoui, Hamad Talibi
    METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY, 2020, 26 (03): : 272 - 282
  • [38] Multiple solutions for a dirichlet problem involving the p-Laplacian
    Cammaroto, F.
    Chinni, A.
    Di Bella, B.
    DYNAMIC SYSTEMS AND APPLICATIONS, 2007, 16 (04): : 673 - 679
  • [39] MULTIPLE SOLUTIONS TO A DIRICHLET EIGENVALUE PROBLEM WITH p-LAPLACIAN
    Marano, Salvatore A.
    Motreanu, Dumitru
    Puglisi, Daniele
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2013, 42 (02) : 277 - 291
  • [40] Existence and multiplicity of solutions for p(x)-Laplacian problem with Steklov boundary condition
    Khaleghi, A.
    Razani, A.
    BOUNDARY VALUE PROBLEMS, 2022, 2022 (01):