On the growth of Artin-Tits monoids and the partial theta function

被引:0
|
作者
Flores, Ramon [1 ]
Gonzalez-Meneses, Juan [2 ]
机构
[1] Univ Seville, Inst Matemat IMUS, Dept Geometria & Topol, Av Reina Mercedes S-N, Seville 41012, Spain
[2] Univ Seville, Inst Matemat IMUS, Dept Algebra, Av Reina Mercedes S-N, Seville 41012, Spain
关键词
Growth; Artin-Tits monoid; Partial theta function; Braid monoid; ASYMPTOTIC EXPANSIONS; PARABOLIC SUBGROUPS; ZEROS;
D O I
10.1016/j.jcta.2022.105623
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a new procedure to determine the growth function of a homogeneous Garside monoid, with respect to the finite generating set formed by the atoms. In particular, we present a formula for the growth function of each Artin-Tits monoid of spherical type (hence of each braid monoid) with respect to the standard generators, as the inverse of the determinant of a very simple matrix. Using this approach, we show that the exponential growth rates of the Artin-Tits monoids of type An (positive braid monoids) tend to 3.233636 . .. as n tends to infinity. This number is well-known, as it is the growth rate of the coefficients of the only formal power series x0(y) = -(1 + y + 2y2 + 4y3 + 9y4 + center dot center dot center dot ) which is the leading root of the classical partial theta function. We also describe the sequence 1, 1, 2, 4, 9, ... formed by the coefficients of -x0(y), by showing that its kth term (the coefficient of yk) is equal to the number of braids of length k, in the positive braid monoid A infinity on an infinite number of strands, whose maximal lexicographic representative starts
引用
收藏
页数:39
相关论文
共 50 条
  • [21] On the minimal positive standardizer of a parabolic subgroup of an Artin-Tits group
    Cumplido, Maria
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2019, 49 (03) : 337 - 359
  • [22] Rewriting systems in sufficiently large Artin-Tits groups
    Godelle, Eddy
    Rees, Sarah
    JOURNAL OF ALGEBRA, 2016, 466 : 284 - 307
  • [23] Quasi-projectivity, Artin-Tits Groups, and Pencil Maps
    Artal Bartolo, Enrique
    Ignacio Cogolludo-Agustin, Jose
    Matei, Daniel
    TOPOLOGY OF ALGEBRAIC VARIETIES AND SINGULARITIES, 2011, 538 : 113 - +
  • [24] Lower central series of Artin-Tits and surface braid groups
    Bellingeri, Paolo
    Gervais, Sylvain
    Guaschi, John
    JOURNAL OF ALGEBRA, 2008, 319 (04) : 1409 - 1427
  • [25] Property R∞ for some spherical and affine Artin-Tits groups
    Calvez, Matthieu
    Soroko, Ignat
    JOURNAL OF GROUP THEORY, 2022, 25 (06) : 1045 - 1054
  • [26] Conjugacy stability of parabolic subgroups of Artin-Tits groups of spherical type
    Calvez, Matthieu
    Cisneros de la Cruz, Bruno A.
    Cumplido, Maria
    JOURNAL OF ALGEBRA, 2020, 556 : 621 - 633
  • [27] A GARSIDE PRESENTATION FOR ARTIN-TITS GROUPS OF TYPE (C)over-tilden
    Digne, F.
    ANNALES DE L INSTITUT FOURIER, 2012, 62 (02) : 641 - 666
  • [28] Growth functions for Artin monoids
    Saito, Kyoji
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2009, 85 (07) : 84 - 88
  • [29] C*-Algebras of Right LCM One-Relator Monoids and Artin–Tits Monoids of Finite Type
    Xin Li
    Tron Omland
    Jack Spielberg
    Communications in Mathematical Physics, 2021, 381 : 1263 - 1308
  • [30] UNIVERSAL UPPER BOUND FOR THE GROWTH OF ARTIN MONOIDS
    Berceanu, Barbu
    Iqbal, Zaffar
    COMMUNICATIONS IN ALGEBRA, 2015, 43 (05) : 1967 - 1982