On the growth of Artin-Tits monoids and the partial theta function

被引:0
|
作者
Flores, Ramon [1 ]
Gonzalez-Meneses, Juan [2 ]
机构
[1] Univ Seville, Inst Matemat IMUS, Dept Geometria & Topol, Av Reina Mercedes S-N, Seville 41012, Spain
[2] Univ Seville, Inst Matemat IMUS, Dept Algebra, Av Reina Mercedes S-N, Seville 41012, Spain
关键词
Growth; Artin-Tits monoid; Partial theta function; Braid monoid; ASYMPTOTIC EXPANSIONS; PARABOLIC SUBGROUPS; ZEROS;
D O I
10.1016/j.jcta.2022.105623
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a new procedure to determine the growth function of a homogeneous Garside monoid, with respect to the finite generating set formed by the atoms. In particular, we present a formula for the growth function of each Artin-Tits monoid of spherical type (hence of each braid monoid) with respect to the standard generators, as the inverse of the determinant of a very simple matrix. Using this approach, we show that the exponential growth rates of the Artin-Tits monoids of type An (positive braid monoids) tend to 3.233636 . .. as n tends to infinity. This number is well-known, as it is the growth rate of the coefficients of the only formal power series x0(y) = -(1 + y + 2y2 + 4y3 + 9y4 + center dot center dot center dot ) which is the leading root of the classical partial theta function. We also describe the sequence 1, 1, 2, 4, 9, ... formed by the coefficients of -x0(y), by showing that its kth term (the coefficient of yk) is equal to the number of braids of length k, in the positive braid monoid A infinity on an infinite number of strands, whose maximal lexicographic representative starts
引用
收藏
页数:39
相关论文
共 50 条
  • [1] Admissible submonoids of Artin-Tits monoids
    Castella, Anatole
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2008, 212 (07) : 1594 - 1611
  • [2] Asymptotic combinatorics of Artin-Tits monoids and of some other monoids
    Abbes, S.
    Gouezel, S.
    Juge, V.
    Mairesse, J.
    JOURNAL OF ALGEBRA, 2019, 525 : 497 - 561
  • [3] Garside families in Artin-Tits monoids and low elements in Coxeter groups
    Dehornoy, Patrick
    Dyer, Matthew
    Hohlweg, Christophe
    COMPTES RENDUS MATHEMATIQUE, 2015, 353 (05) : 403 - 408
  • [4] Multifraction reduction IV: Padding and Artin-Tits monoids of sufficiently large type
    Dehornoy, Patrick
    Holt, Derek F.
    Rees, Sarah
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2018, 222 (12) : 4082 - 4098
  • [5] Orderings on Artin-Tits groups
    Sibert, Herve
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2008, 18 (06) : 1035 - 1066
  • [6] C*-Algebras of Right LCM One-Relator Monoids and Artin-Tits Monoids of Finite Type
    Li, Xin
    Omland, Tron
    Spielberg, Jack
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2021, 381 (03) : 1263 - 1308
  • [7] A conjecture about Artin-Tits groups
    Dehornoy, Patrick
    Godelle, Eddy
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2013, 217 (04) : 741 - 756
  • [8] Double centralizers in Artin-Tits groups
    Ajbal, Oussama
    Godelle, Eddy
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2019, 26 (02) : 275 - 298
  • [9] On loxodromic actions of Artin-Tits groups
    Cumplido, Maria
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2019, 223 (01) : 340 - 348
  • [10] On parabolic subgroups of Artin-Tits groups
    Godelle, Eddy
    JOURNAL OF ALGEBRA, 2023, 632 : 520 - 534