Towards Contextual Learning in Few-shot Object Classification

被引:4
|
作者
Fortin, Mathieu Page [1 ]
Chaib-draa, Brahim [1 ]
机构
[1] Laval Univ, Quebec City, PQ, Canada
来源
2021 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION WACV 2021 | 2021年
关键词
D O I
10.1109/WACV48630.2021.00332
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Few-shot Learning (FSL) aims to classify new concepts from a small number of examples. While there have been an increasing amount of work on few-shot object classification in the last few years, most current approaches are limited to images with only one centered object. On the opposite, humans are able to leverage prior knowledge to quickly learn new concepts, such as semantic relations with contextual elements. Inspired by the concept of contextual learning in educational sciences, we propose to make a step towards adopting this principle in FSL by studying the contribution that context can have in object classification in a low-data regime. To this end, we first propose an approach to perform FSL on images of complex scenes. We develop two plug-and-play modules that can be incorporated into existing FSL methods to enable them to leverage contextual learning. More specifically, these modules are trained to weight the most important context elements while learning a particular concept, and then use this knowledge to ground visual class representations in context semantics. Extensive experiments on Visual Genome and Open Images show the superiority of contextual learning over learning individual objects in isolation.
引用
收藏
页码:3278 / 3287
页数:10
相关论文
共 50 条
  • [11] Diversified Contrastive Learning For Few-Shot Classification
    Lu, Guangtong
    Li, Fanzhang
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2023, PT I, 2023, 14254 : 147 - 158
  • [12] Integrative Few-Shot Learning for Classification and Segmentation
    Kang, Dahyun
    Cho, Minsu
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 9969 - 9980
  • [13] Visual Classification of Malware by Few-shot Learning
    Tran, Kien
    Kubo, Masao
    Sato, Hiroshi
    PROCEEDINGS OF THE 2020 INTERNATIONAL CONFERENCE ON ARTIFICIAL LIFE AND ROBOTICS (ICAROB2020), 2020, : 770 - 774
  • [14] Few-Shot Learning for Medical Image Classification
    Cai, Aihua
    Hu, Wenxin
    Zheng, Jun
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2020, PT I, 2020, 12396 : 441 - 452
  • [15] Spatial Contrastive Learning for Few-Shot Classification
    Ouali, Yassine
    Hudelot, Celine
    Tami, Myriam
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, 2021, 12975 : 671 - 686
  • [16] Continual Few-Shot Learning for Text Classification
    Pasunuru, Ramakanth
    Stoyanov, Veselin
    Bansal, Mohit
    2021 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2021), 2021, : 5688 - 5702
  • [17] FEW-SHOT CONTINUAL LEARNING FOR AUDIO CLASSIFICATION
    Wang, Yu
    Bryan, Nicholas J.
    Cartwright, Mark
    Bello, Juan Pablo
    Salamon, Justin
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 321 - 325
  • [18] Underwater Acoustic Object Discrimination for Few-shot Learning
    Chen, Yuan
    Ma, QiMing
    Yu, Jie
    Chen, Tuo
    2019 4TH INTERNATIONAL CONFERENCE ON MECHANICAL, CONTROL AND COMPUTER ENGINEERING (ICMCCE 2019), 2019, : 430 - 434
  • [19] Object-Aware Attention in Few-Shot Learning
    Shen, Yeqing
    Mo, Lisha
    Ma, Huimin
    Hu, Tianyu
    Dong, Yuhan
    IMAGE AND GRAPHICS TECHNOLOGIES AND APPLICATIONS, IGTA 2021, 2021, 1480 : 95 - 108
  • [20] Dynamic relevance learning for few-shot object detection
    Liu, Weijie
    Cai, Xiaojie
    Wang, Chong
    Li, Haohe
    Yu, Shenghao
    SIGNAL IMAGE AND VIDEO PROCESSING, 2025, 19 (04)